The major archaeological site of Valle Giumentina (Abruzzo) contains a well-dated Lower Palaeolithic pedosedimentary sequence that provides an excellent opportunity to study the relationships among soil weathering, volcanism and climate change at the glacial/interglacial and submillennial timescales in central Italy and the Mediterranean area during the Middle Pleistocene, as well as the human-environment interactions of some of the earliest settlements in central southern Europe. High-resolution analyses of geochemistry and magnetic susceptibility revealed the presence of eleven palaeosols, ten of which (S2-S11) were formed between 560 and 450 ka based on40Ar/39Ar dating of sanidine in tephras, i.e. spanning marine isotope stages (MIS) 14-12. The evolution of the major and trace element composition suggests that the palaeosols were mainly formed by in situ weathering of the parent material. The major phases of soil weathering occurred during the MIS 13 interglacial period (S8 and S6) as well as during episodes of rapid environmental change associated with millennial climatic oscillations during the MIS 14 and 12 glaciations (S11 and S2, respectively). Although global forcing such as orbital variations, solar radiation, and greenhouse gas concentrations may have influenced the pedogenic processes, the volcanism in central Italy, climate change in the central Mediterranean, and tectono-sedimentary evolution of the Valle Giumentina basin also impacted and triggered the formation of most palaeosols, which provided subsistence resources for the Lower Palaeolithic human communities. This study highlights the importance of having high-resolution palaeoenvironmental records with accurate chronology as close as possible to archaeological sites to study human-environment interactions.

Chemical weathering of palaeosols from the Lower Palaeolithic site of Valle Giumentina, central Italy

Aureli, Daniele
Funding Acquisition
;
2018

Abstract

The major archaeological site of Valle Giumentina (Abruzzo) contains a well-dated Lower Palaeolithic pedosedimentary sequence that provides an excellent opportunity to study the relationships among soil weathering, volcanism and climate change at the glacial/interglacial and submillennial timescales in central Italy and the Mediterranean area during the Middle Pleistocene, as well as the human-environment interactions of some of the earliest settlements in central southern Europe. High-resolution analyses of geochemistry and magnetic susceptibility revealed the presence of eleven palaeosols, ten of which (S2-S11) were formed between 560 and 450 ka based on40Ar/39Ar dating of sanidine in tephras, i.e. spanning marine isotope stages (MIS) 14-12. The evolution of the major and trace element composition suggests that the palaeosols were mainly formed by in situ weathering of the parent material. The major phases of soil weathering occurred during the MIS 13 interglacial period (S8 and S6) as well as during episodes of rapid environmental change associated with millennial climatic oscillations during the MIS 14 and 12 glaciations (S11 and S2, respectively). Although global forcing such as orbital variations, solar radiation, and greenhouse gas concentrations may have influenced the pedogenic processes, the volcanism in central Italy, climate change in the central Mediterranean, and tectono-sedimentary evolution of the Valle Giumentina basin also impacted and triggered the formation of most palaeosols, which provided subsistence resources for the Lower Palaeolithic human communities. This study highlights the importance of having high-resolution palaeoenvironmental records with accurate chronology as close as possible to archaeological sites to study human-environment interactions.
2018
Degeai, Jean-Philippe*; Villa, Valentina; Chaussé, Christine; Pereira, Alison; Nomade, Sébastien; Aureli, Daniele; Pagli, Marina; Nicoud, Elisa
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/623989
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact