We introduce admissible positive systems and Hermitian real forms of affine twisted Kac–Moody Lie algebras, and show that a real form has admissible positive system if and only if it is Hermitian. We use the Vogan diagrams to classify the Hermitian real forms, and show that their symmetric spaces carry complex structures. The affine non-twisted Kac–Moody Lie algebras have been treated in an earlier work, and this article deals with the twisted cases.

Admissible positive systems of affine Kac–Moody Lie algebras: The twisted cases

CHUAH, MENG KIAT
Membro del Collaboration Group
;
Fioresi, Rita
Membro del Collaboration Group
2017

Abstract

We introduce admissible positive systems and Hermitian real forms of affine twisted Kac–Moody Lie algebras, and show that a real form has admissible positive system if and only if it is Hermitian. We use the Vogan diagrams to classify the Hermitian real forms, and show that their symmetric spaces carry complex structures. The affine non-twisted Kac–Moody Lie algebras have been treated in an earlier work, and this article deals with the twisted cases.
Chuah, Meng-Kiat; Fioresi, Rita
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/623456
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact