Multiple linear regression is a prime statistical tool used to discover potential relationships between an outcome and some explanatory variables of interest. One of the common required assumptions is for the error terms in the model to be Gaussian. Instead of assuming normality, an alternative is to use a finite mixture of normal distributions, allowing for a more flexible definition of the heterogeneity structure of the data. We use this approach to develop a Bayesian linear regression model with non-normal errors, and through variable selection we focus on finding active predictors effectively contributing to explaining patterns in the observations.

Bayesian variable selection in linear regression models with non-normal errors / Saverio Ranciati, Giuliano Galimberti, Gabriele Soffritti. - ELETTRONICO. - (2017), pp. 1-6. (Intervento presentato al convegno International Conference of The CLAssification and Data Analysis Group (CLADAG) of the Italian Statistical Society (SIS) tenutosi a Milan, Italy nel September 13-15, 2017).

Bayesian variable selection in linear regression models with non-normal errors

Saverio Ranciati;Giuliano Galimberti;Gabriele Soffritti
2017

Abstract

Multiple linear regression is a prime statistical tool used to discover potential relationships between an outcome and some explanatory variables of interest. One of the common required assumptions is for the error terms in the model to be Gaussian. Instead of assuming normality, an alternative is to use a finite mixture of normal distributions, allowing for a more flexible definition of the heterogeneity structure of the data. We use this approach to develop a Bayesian linear regression model with non-normal errors, and through variable selection we focus on finding active predictors effectively contributing to explaining patterns in the observations.
2017
Cladag 2017. Book of short papers
1
6
Bayesian variable selection in linear regression models with non-normal errors / Saverio Ranciati, Giuliano Galimberti, Gabriele Soffritti. - ELETTRONICO. - (2017), pp. 1-6. (Intervento presentato al convegno International Conference of The CLAssification and Data Analysis Group (CLADAG) of the Italian Statistical Society (SIS) tenutosi a Milan, Italy nel September 13-15, 2017).
Saverio Ranciati, Giuliano Galimberti, Gabriele Soffritti
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/622658
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact