Fibroblast Growth Factor Receptor (FGFR) signaling is a complex pathway which controls several processes, including cell proliferation, survival, migration, and metabolism. FGFR1 signaling is frequently deregulated via amplification/overexpression in NSCLC of squamous histotype (SQCLC), however its inhibition has not been successfully translated in clinical setting. We determined whether targeting downstream signaling implicated in FGFR1 effects on glucose metabolism potentiates the anti-tumor activity of FGFR1 inhibition in SQCLC. In FGFR1 amplified/overexpressing SQCLC cell lines, FGF2-mediated stimulation of FGFR1 under serumdeprivation activated both MAPK and AKT/mTOR pathways and increased glucose uptake, glycolysis, and lactate production, through AKT/mTOR-dependent HIF- 1α accumulation and up-regulation of GLUT-1 glucose transporter. These effects were hindered by PD173074 and NVP-BGJ398, selective FGFR inhibitors, as well as by dovitinib, a multi-kinase inhibitor. Glucose metabolism was hampered by the FGFR inhibitors also under hypoxic conditions, with consequent inhibition of cell proliferation and viability. In presence of serum, glucose metabolism was impaired only in cell models in which FGFR1 inhibition was associated with AKT/mTOR downregulation. When the activation of the AKT/mTOR pathway persisted despite FGFR1 down-regulation, the efficacy of NVP-BGJ398 could be significantly improved by the combination with NVP-BEZ235 or other inhibitors of this signaling cascade, both in vitro and in xenotransplanted nude mice. Collectively our results indicate that inhibition of FGFR1 signaling impacts on cancer cell growth also by affecting glucose energy metabolism. In addition, this study strongly suggests that the therapeutic efficacy of FGFR1 targeting molecules in SQCLC may be implemented by combined treatments tackling on glucose metabolism.

Fumarola, C., Cretella, D., La Monica, S., Bonelli, M.A., Alfieri, R., Caffarra, C., et al. (2017). Enhancement of the anti-tumor activity of FGFR1 inhibition in squamous cell lung cancer by targeting downstream signaling involved in glucose metabolism. ONCOTARGET, 8(54), 91841-91859 [10.18632/oncotarget.19279].

Enhancement of the anti-tumor activity of FGFR1 inhibition in squamous cell lung cancer by targeting downstream signaling involved in glucose metabolism

Ardizzoni, Andrea
2017

Abstract

Fibroblast Growth Factor Receptor (FGFR) signaling is a complex pathway which controls several processes, including cell proliferation, survival, migration, and metabolism. FGFR1 signaling is frequently deregulated via amplification/overexpression in NSCLC of squamous histotype (SQCLC), however its inhibition has not been successfully translated in clinical setting. We determined whether targeting downstream signaling implicated in FGFR1 effects on glucose metabolism potentiates the anti-tumor activity of FGFR1 inhibition in SQCLC. In FGFR1 amplified/overexpressing SQCLC cell lines, FGF2-mediated stimulation of FGFR1 under serumdeprivation activated both MAPK and AKT/mTOR pathways and increased glucose uptake, glycolysis, and lactate production, through AKT/mTOR-dependent HIF- 1α accumulation and up-regulation of GLUT-1 glucose transporter. These effects were hindered by PD173074 and NVP-BGJ398, selective FGFR inhibitors, as well as by dovitinib, a multi-kinase inhibitor. Glucose metabolism was hampered by the FGFR inhibitors also under hypoxic conditions, with consequent inhibition of cell proliferation and viability. In presence of serum, glucose metabolism was impaired only in cell models in which FGFR1 inhibition was associated with AKT/mTOR downregulation. When the activation of the AKT/mTOR pathway persisted despite FGFR1 down-regulation, the efficacy of NVP-BGJ398 could be significantly improved by the combination with NVP-BEZ235 or other inhibitors of this signaling cascade, both in vitro and in xenotransplanted nude mice. Collectively our results indicate that inhibition of FGFR1 signaling impacts on cancer cell growth also by affecting glucose energy metabolism. In addition, this study strongly suggests that the therapeutic efficacy of FGFR1 targeting molecules in SQCLC may be implemented by combined treatments tackling on glucose metabolism.
2017
Fumarola, C., Cretella, D., La Monica, S., Bonelli, M.A., Alfieri, R., Caffarra, C., et al. (2017). Enhancement of the anti-tumor activity of FGFR1 inhibition in squamous cell lung cancer by targeting downstream signaling involved in glucose metabolism. ONCOTARGET, 8(54), 91841-91859 [10.18632/oncotarget.19279].
Fumarola, Claudia*; Cretella, Daniele; La Monica, Silvia; Bonelli, Mara A.; Alfieri, Roberta; Caffarra, Cristina; Quaini, Federico; Madeddu, Denise; F...espandi
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/621858
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 18
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 29
social impact