The CSES satellite, developed by Chinese (CNSA) and Italian (ASI) space Agencies, will investigate iono-magnetospheric disturbances (induced by seismicity and electromagnetic emissions of tropospheric and anthropogenic origin); will monitor the temporal stability of the inner Van Allen radiation belts and will study the solar-terrestrial coupling by measuring fluxes of cosmic rays and solar energetic particles. In particular the mission aims at confirming the existences (claimed from several analyses) of a temporal correlations between the occurrence of earthquakes and the observation in space of electromagnetic disturbances, plasma fluctiations and anomalous fluxes of high-energy particles precipitating from the inner Van Allen belt. CSES will be launched in the summer of 2017 with a multi-instruments payload able to measure: e.m. fields, charged particles, plasma, TEC, etc. The Italian LIMADOU collaboration will provide the High-Energy Particle Detector (HEPD), designed for detecting electrons (3–200 MeV) and proton (30–300 MeV)), and participates to develop the Electric Field Detector (EFD) conceived for measuring electric field from ∼DC up to 5 MHz.

Alfonsi, L., Ambroglini, F., Ambrosi, G., Ammendola, R., Assante, D., Badoni, D., et al. (2017). The HEPD particle detector and the EFD electric field detector for the CSES satellite. RADIATION PHYSICS AND CHEMISTRY, 137, 187-192 [10.1016/j.radphyschem.2016.12.022].

The HEPD particle detector and the EFD electric field detector for the CSES satellite

Contin, A.;
2017

Abstract

The CSES satellite, developed by Chinese (CNSA) and Italian (ASI) space Agencies, will investigate iono-magnetospheric disturbances (induced by seismicity and electromagnetic emissions of tropospheric and anthropogenic origin); will monitor the temporal stability of the inner Van Allen radiation belts and will study the solar-terrestrial coupling by measuring fluxes of cosmic rays and solar energetic particles. In particular the mission aims at confirming the existences (claimed from several analyses) of a temporal correlations between the occurrence of earthquakes and the observation in space of electromagnetic disturbances, plasma fluctiations and anomalous fluxes of high-energy particles precipitating from the inner Van Allen belt. CSES will be launched in the summer of 2017 with a multi-instruments payload able to measure: e.m. fields, charged particles, plasma, TEC, etc. The Italian LIMADOU collaboration will provide the High-Energy Particle Detector (HEPD), designed for detecting electrons (3–200 MeV) and proton (30–300 MeV)), and participates to develop the Electric Field Detector (EFD) conceived for measuring electric field from ∼DC up to 5 MHz.
2017
Alfonsi, L., Ambroglini, F., Ambrosi, G., Ammendola, R., Assante, D., Badoni, D., et al. (2017). The HEPD particle detector and the EFD electric field detector for the CSES satellite. RADIATION PHYSICS AND CHEMISTRY, 137, 187-192 [10.1016/j.radphyschem.2016.12.022].
Alfonsi, L.; Ambroglini, F.; Ambrosi, G.; Ammendola, R.; Assante, D.; Badoni, D.; Belyaev, V.A.; Burger, W.J.; Cafagna, A.; Cipollone, P.; Consolini, ...espandi
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/621382
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact