Structural Health Monitoring (SHM) has a crucial role in the diagnosis and conservation of historical buildings, which are typically characterized by articulated fabrics, constructed over decades using different materials and construction techniques. All these issues lead to very complex structural behaviour whose reliable assessment cannot disregard from a sound interpretation of data from SHM systems. SHM systems can be classified into (i) static systems, monitoring the long term time evolutions of specific quantities (such as amplitude of cracks, inclination of walls, relative distances, etc.) and (ii) dynamic systems, continuously monitoring the dynamic response (velocities, accelerations) in order to gather information upon overall dynamic properties such as natural frequencies, mode shapes and damping ratios. The recorded raw data need to be processed in order to distinguish eventual evolutionary trends from the seasonal and daily variations related to thermal effects. In the present work, a simple unified approach for data interpretation acquired from both static and dynamic SHM systems installed in historical buildings is presented. The approach is aimed at: (i) introducing reference quantities for interpretation of seasonal and daily variations, (ii) providing order of magnitudes of reference quantities and (iii) identifying eventual evolutionary trends which could be related to the presence of potential structural criticalities. The approach is illustrated referring to the "Two Towers" of Bologna.

Baraccani, S., Palermo, M., Azzara, R.M., Gasparini, G., Silvestri, S., Trombetti, T. (2017). Structural interpretation of data from static and dynamic structural health monitoring of monumental buildings. Zurigo : Trans Tech Publications Ltd [10.4028/www.scientific.net/KEM.747.431].

Structural interpretation of data from static and dynamic structural health monitoring of monumental buildings

Baraccani, Simonetta;Palermo, Michele;Gasparini, Giada;Silvestri, Stefano;Trombetti, Tomaso
2017

Abstract

Structural Health Monitoring (SHM) has a crucial role in the diagnosis and conservation of historical buildings, which are typically characterized by articulated fabrics, constructed over decades using different materials and construction techniques. All these issues lead to very complex structural behaviour whose reliable assessment cannot disregard from a sound interpretation of data from SHM systems. SHM systems can be classified into (i) static systems, monitoring the long term time evolutions of specific quantities (such as amplitude of cracks, inclination of walls, relative distances, etc.) and (ii) dynamic systems, continuously monitoring the dynamic response (velocities, accelerations) in order to gather information upon overall dynamic properties such as natural frequencies, mode shapes and damping ratios. The recorded raw data need to be processed in order to distinguish eventual evolutionary trends from the seasonal and daily variations related to thermal effects. In the present work, a simple unified approach for data interpretation acquired from both static and dynamic SHM systems installed in historical buildings is presented. The approach is aimed at: (i) introducing reference quantities for interpretation of seasonal and daily variations, (ii) providing order of magnitudes of reference quantities and (iii) identifying eventual evolutionary trends which could be related to the presence of potential structural criticalities. The approach is illustrated referring to the "Two Towers" of Bologna.
2017
Key Engineering Materials
431
439
Baraccani, S., Palermo, M., Azzara, R.M., Gasparini, G., Silvestri, S., Trombetti, T. (2017). Structural interpretation of data from static and dynamic structural health monitoring of monumental buildings. Zurigo : Trans Tech Publications Ltd [10.4028/www.scientific.net/KEM.747.431].
Baraccani, Simonetta*; Palermo, Michele; Azzara, Riccardo M.; Gasparini, Giada; Silvestri, Stefano; Trombetti, Tomaso
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/621287
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? ND
social impact