Recent advances in portable technologies suggest that ad hoc networks will finally move out from the research and military harbors to the commercial world. In particular, vehicular safety and entertainment applications are mature for the market. Several major manufacturer are considering vehicular communications as an opportunity to increase the profitability and marketability of their vehicles. In this phase, simulations are essential to evaluate the performance of protocols and applications large urban Ad Hoc and Vehicular networks. This paper tackles on the long overdue issue of an high fidelity propagation model for urban ad hoc networks. In particular, we propose CORNER a low computational cost yet accurate urban propagation prediction technique for ad hoc networks in urban scenarios. We also provide validation of the model through a side-to-side comparison of real experiments and simulations. ©2010 IEEE.
Giordano, E., Frank, R., Pau, G., Gerla, M. (2010). CORNER: A realistic urban propagation model for VANET [10.1109/WONS.2010.5437133].
CORNER: A realistic urban propagation model for VANET
Pau, Giovanni;
2010
Abstract
Recent advances in portable technologies suggest that ad hoc networks will finally move out from the research and military harbors to the commercial world. In particular, vehicular safety and entertainment applications are mature for the market. Several major manufacturer are considering vehicular communications as an opportunity to increase the profitability and marketability of their vehicles. In this phase, simulations are essential to evaluate the performance of protocols and applications large urban Ad Hoc and Vehicular networks. This paper tackles on the long overdue issue of an high fidelity propagation model for urban ad hoc networks. In particular, we propose CORNER a low computational cost yet accurate urban propagation prediction technique for ad hoc networks in urban scenarios. We also provide validation of the model through a side-to-side comparison of real experiments and simulations. ©2010 IEEE.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.