Background Preclinical models that mimic pathological and molecular features of solitary fibrous tumour (SFT) represent an important tool to select effective regimes and novel compounds to be tested in the clinic. This study was aimed at developing two preclinical models of SFT, assessing their predictive value in the clinic and selecting potential novel effective treatments. Material and methods Two dedifferentiated-SFT (D-SFT) models obtained from patients’ biopsies were grown in immunodeficient mice. The antitumour activity on these models of doxorubicin, dacarbazine (DTIC), ifosfamide (monotherapy or combination), trabectedin and eribulin was tested. Twelve SFT patients were treated with doxorubicin and DTIC. Response by RECIST, progression-free survival and overall survival were retrospectively evaluated, distinguishing malignant-SFT (M-SFT) and D-SFT. Results Two D-SFT patient-derived xenografts (PDXs) that represent the first available preclinical in vivo models of SFT were developed and characterised. Doxorubicin/DTIC, DTIC/ifosfamide, doxorubicin/ifosfamide combinations consistently induced better antitumour activity than the single-agents. Particularly, doxorubicin/DTIC combination caused a max tumour volume inhibition >80% in both models. Doxorubicin/DTIC combo showed activity also in the case-series. Best RECIST responses were: 6 responses (M-SFT = 2 of 7, D-SFT = 4 of 5), 1 stable disease, 5 progressions, with a 6-month median progression-free survival (M-SFT = 6, D-SFT = 10 months). The PDXs were very sensitive to trabectedin and eribulin. Conclusion Doxorubicin plus DTIC combination was effective in our two D-SFT mice models and appeared to be active also in the clinic, especially in high-grade D-SFT patients. Among additional drugs tested in the PDXs, trabectedin and eribulin were highly effective, providing a rational to test these drugs in D-SFT patients.

Patient-derived solitary fibrous tumour xenografts predict high sensitivity to doxorubicin/dacarbazine combination confirmed in the clinic and highlight the potential effectiveness of trabectedin or eribulin against this tumour

Saponara, M.
Writing – Original Draft Preparation
;
2017

Abstract

Background Preclinical models that mimic pathological and molecular features of solitary fibrous tumour (SFT) represent an important tool to select effective regimes and novel compounds to be tested in the clinic. This study was aimed at developing two preclinical models of SFT, assessing their predictive value in the clinic and selecting potential novel effective treatments. Material and methods Two dedifferentiated-SFT (D-SFT) models obtained from patients’ biopsies were grown in immunodeficient mice. The antitumour activity on these models of doxorubicin, dacarbazine (DTIC), ifosfamide (monotherapy or combination), trabectedin and eribulin was tested. Twelve SFT patients were treated with doxorubicin and DTIC. Response by RECIST, progression-free survival and overall survival were retrospectively evaluated, distinguishing malignant-SFT (M-SFT) and D-SFT. Results Two D-SFT patient-derived xenografts (PDXs) that represent the first available preclinical in vivo models of SFT were developed and characterised. Doxorubicin/DTIC, DTIC/ifosfamide, doxorubicin/ifosfamide combinations consistently induced better antitumour activity than the single-agents. Particularly, doxorubicin/DTIC combination caused a max tumour volume inhibition >80% in both models. Doxorubicin/DTIC combo showed activity also in the case-series. Best RECIST responses were: 6 responses (M-SFT = 2 of 7, D-SFT = 4 of 5), 1 stable disease, 5 progressions, with a 6-month median progression-free survival (M-SFT = 6, D-SFT = 10 months). The PDXs were very sensitive to trabectedin and eribulin. Conclusion Doxorubicin plus DTIC combination was effective in our two D-SFT mice models and appeared to be active also in the clinic, especially in high-grade D-SFT patients. Among additional drugs tested in the PDXs, trabectedin and eribulin were highly effective, providing a rational to test these drugs in D-SFT patients.
Stacchiotti, S.; Saponara, M.; Frapolli, R.; Tortoreto, M.; Cominetti, D.; Provenzano, S.; Negri, T.; Dagrada, G. P.; Gronchi, A.; Colombo, C.; Vincenzi, B.; Badalamenti, G.; Zuco, V.; Renne, S. L.; Collini, P.; Morosi, C.; Dei Tos, A. P.; Bello, E.; Pilotti, S.; Casali, P. G.; D'Incalci, M.; Zaffaroni, N.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/620468
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 17
social impact