In this review, we summarize current knowledge regarding the epigenetics of age-related diseases, focusing on those studies that have described DNA methylation landscape in cardio-vascular diseases, musculoskeletal function and frailty. We stress the importance of adopting the conceptual framework of “geroscience”, which starts from the observation that advanced age is the major risk factor for several of these pathologies and aims at identifying the mechanistic links between aging and age-related diseases. DNA methylation undergoes a profound remodeling during aging, which includes global hypomethylation of the genome, hypermethylation at specific loci and an increase in inter-individual variation and in stochastic changes of DNA methylation values. These epigenetic modifications can be an important contributor to the development of age-related diseases, but our understanding on the complex relationship between the epigenetic signatures of aging and age-related disease is still poor. The most relevant results in this field come from the use of the so called “epigenetics clocks” in cohorts of subjects affected by age-related diseases. We report these studies in final section of this review.

Gensous, N., Bacalini, M.G., Pirazzini, C., Marasco, E., Giuliani, C., Ravaioli, F., et al. (2017). The epigenetic landscape of age-related diseases: the geroscience perspective. BIOGERONTOLOGY, 18(4), 549-559 [10.1007/s10522-017-9695-7].

The epigenetic landscape of age-related diseases: the geroscience perspective

Gensous, Noémie;Bacalini, Maria Giulia;Pirazzini, Chiara;Marasco, Elena;Giuliani, Cristina;Ravaioli, Francesco;Mengozzi, Giacomo;Bertarelli, Claudia;Palmas, Maria Giustina;Franceschi, Claudio;Garagnani, Paolo
2017

Abstract

In this review, we summarize current knowledge regarding the epigenetics of age-related diseases, focusing on those studies that have described DNA methylation landscape in cardio-vascular diseases, musculoskeletal function and frailty. We stress the importance of adopting the conceptual framework of “geroscience”, which starts from the observation that advanced age is the major risk factor for several of these pathologies and aims at identifying the mechanistic links between aging and age-related diseases. DNA methylation undergoes a profound remodeling during aging, which includes global hypomethylation of the genome, hypermethylation at specific loci and an increase in inter-individual variation and in stochastic changes of DNA methylation values. These epigenetic modifications can be an important contributor to the development of age-related diseases, but our understanding on the complex relationship between the epigenetic signatures of aging and age-related disease is still poor. The most relevant results in this field come from the use of the so called “epigenetics clocks” in cohorts of subjects affected by age-related diseases. We report these studies in final section of this review.
2017
Gensous, N., Bacalini, M.G., Pirazzini, C., Marasco, E., Giuliani, C., Ravaioli, F., et al. (2017). The epigenetic landscape of age-related diseases: the geroscience perspective. BIOGERONTOLOGY, 18(4), 549-559 [10.1007/s10522-017-9695-7].
Gensous, Noémie; Bacalini, Maria Giulia; Pirazzini, Chiara; Marasco, Elena; Giuliani, Cristina; Ravaioli, Francesco; Mengozzi, Giacomo; Bertarelli, Cl...espandi
File in questo prodotto:
File Dimensione Formato  
Gensous2017.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 510.39 kB
Formato Adobe PDF
510.39 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/619654
Citazioni
  • ???jsp.display-item.citation.pmc??? 29
  • Scopus 61
  • ???jsp.display-item.citation.isi??? 51
social impact