A series of monoanionic Ir(III) complexes (2-4) of general formula [Ir(C^N)2(b-trz)](TBA) are presented, where C^N indicates three different cyclometallating ligands (Hppy = 2-phenylpyridine; Hdfppy = 2-(2,4-difluoro-phenyl)pyridine; Hpqu = 2-methyl-3-phenylquinoxaline), b-trz is a bis-tetrazolate anionic N^N chelator (H2b-trz = di(1H-tetrazol-5-yl)methane), and TBA = tetrabutylammonium. 2-4 are prepared in good yields by means of the reaction of the suitable b-trz bidentate ligand with the desired iridium(III) precursor. The chelating nature of the ancillary ligand, thanks to an optimized structure and geometry, improves the stability of the complexes, which have been fully characterized by NMR spectroscopy and high-resolution MS, while X-ray structure determination confirmed the binding mode of the b-trz ligand. Density functional theory calculations show that the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) are mainly localized on the metal center and the cyclometalating ligands, while the bis-tetrazolate unit does not contribute to the frontier orbitals. By comparison with selected classes of previously published cationic and anionic complexes with high ligand field and even identical cyclometallating moieties, it is shown that the HOMO-LUMO gap is similar, but the absolute energy of the frontier orbitals is remarkably higher for anionic vs cationic compounds, due to electrostatic effects. 2-4 exhibit reversible oxidation and reduction processes, which make them interesting candidates as active materials for light emitting electrochemical cells, along with red, green, and blue emission, thanks to the design of the C^N ligands. Photoluminescence quantum yields range from 28% (4, C^N = pqu, red emitter) to 83% (3, C^N = dfppy, blue emitter) in acetonitrile, with the latter compound reaching 95% in poly(methyl methacrylate) (PMMA) matrix. In thin films, the photoluminescence quantum yield decreases substantially probably due to the small intersite distance between the complexes and the presence of quenching sites. In spite of this, surprisingly stable electroluminescence was observed for devices employing complex 2, demonstrating the robustness of the anionic compounds.

Matteucci, E., Baschieri, A., Mazzanti, A., Sambri, L., Ávila, J., Pertegás, A., et al. (2017). Anionic Cyclometalated Iridium(III) Complexes with a Bis-Tetrazolate Ancillary Ligand for Light-Emitting Electrochemical Cells. INORGANIC CHEMISTRY, 56(17), 10584-10595 [10.1021/acs.inorgchem.7b01544].

Anionic Cyclometalated Iridium(III) Complexes with a Bis-Tetrazolate Ancillary Ligand for Light-Emitting Electrochemical Cells

Matteucci, Elia;Baschieri, Andrea;Mazzanti, Andrea;Sambri, Letizia;Monti, Filippo;LEONI, ENRICO;Armaroli, Nicola
2017

Abstract

A series of monoanionic Ir(III) complexes (2-4) of general formula [Ir(C^N)2(b-trz)](TBA) are presented, where C^N indicates three different cyclometallating ligands (Hppy = 2-phenylpyridine; Hdfppy = 2-(2,4-difluoro-phenyl)pyridine; Hpqu = 2-methyl-3-phenylquinoxaline), b-trz is a bis-tetrazolate anionic N^N chelator (H2b-trz = di(1H-tetrazol-5-yl)methane), and TBA = tetrabutylammonium. 2-4 are prepared in good yields by means of the reaction of the suitable b-trz bidentate ligand with the desired iridium(III) precursor. The chelating nature of the ancillary ligand, thanks to an optimized structure and geometry, improves the stability of the complexes, which have been fully characterized by NMR spectroscopy and high-resolution MS, while X-ray structure determination confirmed the binding mode of the b-trz ligand. Density functional theory calculations show that the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) are mainly localized on the metal center and the cyclometalating ligands, while the bis-tetrazolate unit does not contribute to the frontier orbitals. By comparison with selected classes of previously published cationic and anionic complexes with high ligand field and even identical cyclometallating moieties, it is shown that the HOMO-LUMO gap is similar, but the absolute energy of the frontier orbitals is remarkably higher for anionic vs cationic compounds, due to electrostatic effects. 2-4 exhibit reversible oxidation and reduction processes, which make them interesting candidates as active materials for light emitting electrochemical cells, along with red, green, and blue emission, thanks to the design of the C^N ligands. Photoluminescence quantum yields range from 28% (4, C^N = pqu, red emitter) to 83% (3, C^N = dfppy, blue emitter) in acetonitrile, with the latter compound reaching 95% in poly(methyl methacrylate) (PMMA) matrix. In thin films, the photoluminescence quantum yield decreases substantially probably due to the small intersite distance between the complexes and the presence of quenching sites. In spite of this, surprisingly stable electroluminescence was observed for devices employing complex 2, demonstrating the robustness of the anionic compounds.
2017
Matteucci, E., Baschieri, A., Mazzanti, A., Sambri, L., Ávila, J., Pertegás, A., et al. (2017). Anionic Cyclometalated Iridium(III) Complexes with a Bis-Tetrazolate Ancillary Ligand for Light-Emitting Electrochemical Cells. INORGANIC CHEMISTRY, 56(17), 10584-10595 [10.1021/acs.inorgchem.7b01544].
Matteucci, Elia; Baschieri, Andrea; Mazzanti, Andrea; Sambri, Letizia; Ávila, Jorge; Pertegás, Antonio; Bolink, Henk J.; Monti, Filippo; Leoni, Enrico...espandi
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/619649
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 39
  • ???jsp.display-item.citation.isi??? 40
social impact