Both color and depth information may be deployed to seek by content through RGB-D imagery. Previous works dealing with global descriptors for RGB-D images advocate a decision level fusion whereby independently computed color and depth representations are juxtaposed to pursue similarity search. Differently, in this paper we propose a learning-to-rank paradigm aimed at weighting the two information channels according to the specific traits of the task and data at hand, thereby effortlessly addressing the potential diversity across applications. In particular, we propose a novel method, referred to as kNN-rank, which can learn the regularities among the outputs yielded by similarity-based queries. A further novel contribution of this paper concerns the HyperRGBD framework, a set of tools conceived to enable seamless aggregation of existing RGB-D datasets in order to obtain new data featuring desired peculiarities and cardinality.

Petrelli, A., Di Stefano, L. (2017). Learning to weight color and depth for RGB-D visual search. Springer Verlag [10.1007/978-3-319-68560-1_58].

Learning to weight color and depth for RGB-D visual search

Petrelli, Alioscia;Di Stefano, Luigi
2017

Abstract

Both color and depth information may be deployed to seek by content through RGB-D imagery. Previous works dealing with global descriptors for RGB-D images advocate a decision level fusion whereby independently computed color and depth representations are juxtaposed to pursue similarity search. Differently, in this paper we propose a learning-to-rank paradigm aimed at weighting the two information channels according to the specific traits of the task and data at hand, thereby effortlessly addressing the potential diversity across applications. In particular, we propose a novel method, referred to as kNN-rank, which can learn the regularities among the outputs yielded by similarity-based queries. A further novel contribution of this paper concerns the HyperRGBD framework, a set of tools conceived to enable seamless aggregation of existing RGB-D datasets in order to obtain new data featuring desired peculiarities and cardinality.
2017
IMAGE ANALYSIS AND PROCESSING,(ICIAP 2017), PT I
648
659
Petrelli, A., Di Stefano, L. (2017). Learning to weight color and depth for RGB-D visual search. Springer Verlag [10.1007/978-3-319-68560-1_58].
Petrelli, Alioscia; Di Stefano, Luigi
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/619495
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact