Bohm’s interpretation of Quantum Mechanics leads to the derivation of a Quantum Kinetic Equation. In the present work, moments of this kinetic equation are taken, thus deriving conservation equations. These macroscopic equations are then applied to study the propagation of longitudinal density perturbations in neutral gases and plasmas, of either fermions or bosons. The dispersion relation is derived and the effect of Bohm’s potential shown; the speed of propagation calculated and the difference between fermions and bosons investigated.
D. Mostacci, V. Molinari, F. Pizzio (2008). QUANTUM MACROSCOPIC EQUATIONS FROM BOHM POTENTIAL AND PROPAGATION OF WAVES. PHYSICA. A, 387, 6771-6777 [10.1016/j.physa.2008.09.011].
QUANTUM MACROSCOPIC EQUATIONS FROM BOHM POTENTIAL AND PROPAGATION OF WAVES
MOSTACCI, DOMIZIANO;
2008
Abstract
Bohm’s interpretation of Quantum Mechanics leads to the derivation of a Quantum Kinetic Equation. In the present work, moments of this kinetic equation are taken, thus deriving conservation equations. These macroscopic equations are then applied to study the propagation of longitudinal density perturbations in neutral gases and plasmas, of either fermions or bosons. The dispersion relation is derived and the effect of Bohm’s potential shown; the speed of propagation calculated and the difference between fermions and bosons investigated.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.