Nanocomposites based on poly(butylene succinate) (PBS) and hydrotalcite-type anionic clays (HTs) organo-modified with biomolecules characterized by antibacterial and/or antioxidant activities, such as l-ascorbic acid (ASA), phloretic acid (HPP), l-tyrosine (TYR) and l-tryptophan (TRP), have been prepared by in situ polymerization. From XRD analysis and rheology experiments in a molten polymer state, intercalated HT hybrid platelets acting here as a hybrid filler are found to be well dispersed into polymers while providing a chain extension effect on PBS. Moreover, the molecules, when hosted within a HT interlayer gap, do preserve their pristine antibacterial activity, both in HT and in the resulting PBS composites. In particular, under the experimental conditions tested, HT/ASA and HT/TYR present the best combination of both properties (chain extension effect and antibacterial), especially versus E. coli as high as 90 and 97% of inhibition, respectively, using 2.5 wt% hybrid filler only. These findings open future applications for PBS associated with the hybrid HT filler as multifunctional materials in active packaging applications.
Titolo: | Dual chain extension effect and antibacterial properties of biomolecules interleaved within LDH dispersed into PBS by in situ polymerization |
Autore/i: | Totaro, Grazia; Sisti, Laura; Celli, Annamaria; Aloisio, Irene; Di Gioia, Diana; Marek, Adam A; Verney, Vincent; Leroux, Fabrice |
Autore/i Unibo: | |
Anno: | 2018 |
Rivista: | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1039/c7dt03914j |
Abstract: | Nanocomposites based on poly(butylene succinate) (PBS) and hydrotalcite-type anionic clays (HTs) organo-modified with biomolecules characterized by antibacterial and/or antioxidant activities, such as l-ascorbic acid (ASA), phloretic acid (HPP), l-tyrosine (TYR) and l-tryptophan (TRP), have been prepared by in situ polymerization. From XRD analysis and rheology experiments in a molten polymer state, intercalated HT hybrid platelets acting here as a hybrid filler are found to be well dispersed into polymers while providing a chain extension effect on PBS. Moreover, the molecules, when hosted within a HT interlayer gap, do preserve their pristine antibacterial activity, both in HT and in the resulting PBS composites. In particular, under the experimental conditions tested, HT/ASA and HT/TYR present the best combination of both properties (chain extension effect and antibacterial), especially versus E. coli as high as 90 and 97% of inhibition, respectively, using 2.5 wt% hybrid filler only. These findings open future applications for PBS associated with the hybrid HT filler as multifunctional materials in active packaging applications. |
Data stato definitivo: | 2018-09-21T11:09:33Z |
Appare nelle tipologie: | 1.01 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipo | Licenza | |
---|---|---|---|---|
Dalton2018.pdf | Versione (PDF) editoriale | Licenza per accesso riservato | Administrator Contatta l'autore |