This study investigated to what extent rod-dominated vision affects motion and form perception accuracy. Twenty-nine healthy subjects took part in the experiment. Form coherence (FC), form-from-motion (FFM) and motion coherence (MC) tests were assessed in low-light (rod-dominated vision) and high-light (cone-dominated vision) conditions. For each test we determined the accuracy by evaluating the correct detection obtained in five levels of coherence (corresponding to different signal-to-noise ratio). The results evidenced that motion, form and form-from-motion accuracy decreased in low-light condition. Furthermore, light condition effect was differently mediated by noise according to the type of task. The motion perception is affected only at high noise levels, while form discrimination was globally affected at all the levels, also in absence of noise, both for static (FC) and dynamic stimuli (FFM). We conclude that in rod-dominated vision form-from-motion perception is more defected than form and motion perception. We hypothesized that our results are due to the integration between M and P cells in FFM test increases the form perception accuracy in high-light condition but this advantage is completely lost during low-light condition, when the rods need to integrate information both from M and P cells.

The Effect of Luminance Condition on Form, Form-from-Motion and Motion Perception

GIOVAGNOLI SARA
;
PANSELL TONY;BOLZANI ROBERTO;HELLGREN, KERSTIN MARGARETA;BENASSI MARIAGRAZIA
2017

Abstract

This study investigated to what extent rod-dominated vision affects motion and form perception accuracy. Twenty-nine healthy subjects took part in the experiment. Form coherence (FC), form-from-motion (FFM) and motion coherence (MC) tests were assessed in low-light (rod-dominated vision) and high-light (cone-dominated vision) conditions. For each test we determined the accuracy by evaluating the correct detection obtained in five levels of coherence (corresponding to different signal-to-noise ratio). The results evidenced that motion, form and form-from-motion accuracy decreased in low-light condition. Furthermore, light condition effect was differently mediated by noise according to the type of task. The motion perception is affected only at high noise levels, while form discrimination was globally affected at all the levels, also in absence of noise, both for static (FC) and dynamic stimuli (FFM). We conclude that in rod-dominated vision form-from-motion perception is more defected than form and motion perception. We hypothesized that our results are due to the integration between M and P cells in FFM test increases the form perception accuracy in high-light condition but this advantage is completely lost during low-light condition, when the rods need to integrate information both from M and P cells.
2017
Giovagnoli, Sara; Pansell, Tony; Bolzani, Roberto; Hellgren, Kerstin; Benassi, Mariagrazia
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/617743
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact