The light output of the peroxidase-catalyzed luminol chemiluminescent oxidation reaction can be greatly increased by incorporating different enhancers. Such an increase is attributed to the preferential oxidation of the enhancer by peroxidase intermediates and the rapid formation of enhancer radicals that, in turn, quickly oxidize luminol to its radical anion. These enhancers, which include substituted phenols, substituted boronic acids, indophenols, and N-alkyl phenothiazines, behave as electron transfer mediators. A further, very significant increase in light output was also observed by the addition of nucleophilic acylation catalyst to the enhancer/luminol/oxidant substrate. The effect of the new component is general and applicable to many of the known enhancers but is much more remarkable in association with phenothiazine enhancers (up to 10-fold light output). The addition of a nucleophilic acylation catalyst to these substrates lowered the limit of detection for horseradish peroxidase from 50 to 8 amol. Similar improvements were observed in "sandwich" enzyme-linked immunosorbent assays and Western blot assays.

E. Marzocchi, S. Grilli, L. Della Ciana, L. Prodi, M. Mirasoli, A. Roda (2008). Chemiluminescent detection systems of horseradish peroxidase employing nucleophilic acylation catalysts. ANALYTICAL BIOCHEMISTRY, 377, 189-194 [10.1016/j.ab.2008.03.020].

Chemiluminescent detection systems of horseradish peroxidase employing nucleophilic acylation catalysts

PRODI, LUCA;MIRASOLI, MARA;RODA, ALDO
2008

Abstract

The light output of the peroxidase-catalyzed luminol chemiluminescent oxidation reaction can be greatly increased by incorporating different enhancers. Such an increase is attributed to the preferential oxidation of the enhancer by peroxidase intermediates and the rapid formation of enhancer radicals that, in turn, quickly oxidize luminol to its radical anion. These enhancers, which include substituted phenols, substituted boronic acids, indophenols, and N-alkyl phenothiazines, behave as electron transfer mediators. A further, very significant increase in light output was also observed by the addition of nucleophilic acylation catalyst to the enhancer/luminol/oxidant substrate. The effect of the new component is general and applicable to many of the known enhancers but is much more remarkable in association with phenothiazine enhancers (up to 10-fold light output). The addition of a nucleophilic acylation catalyst to these substrates lowered the limit of detection for horseradish peroxidase from 50 to 8 amol. Similar improvements were observed in "sandwich" enzyme-linked immunosorbent assays and Western blot assays.
2008
E. Marzocchi, S. Grilli, L. Della Ciana, L. Prodi, M. Mirasoli, A. Roda (2008). Chemiluminescent detection systems of horseradish peroxidase employing nucleophilic acylation catalysts. ANALYTICAL BIOCHEMISTRY, 377, 189-194 [10.1016/j.ab.2008.03.020].
E. Marzocchi; S. Grilli; L. Della Ciana; L. Prodi; M. Mirasoli; A. Roda;
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/61689
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 66
  • ???jsp.display-item.citation.isi??? 67
social impact