Despite the availability of several anti-retrovirals, there is still an urgent need for developing novel therapeutic strategies and finding new drugs against underexplored HIV-1 targets. Among them, there are the HIV-1 reverse transcriptase (RT)-associated ribonuclease H (RNase H) function and the cellular α-glucosidase, involved in the control mechanisms of N-linked glycoproteins formation in the endoplasmic reticulum. It is known that many natural compounds, such as pentacyclic triterpenes, are a promising class of HIV-1 inhibitors. Hence, here we tested the pentacyclic triterpene Lupeol, showing that it inhibits the HIV-1 RT-associated RNase H function. We then performed combination studies of Lupeol and the active site RNase H inhibitor RDS1759, and blind docking calculations, demonstrating that Lupeol binds to an HIV-1 RT allosteric pocket. On the bases of these results and searching for potential multitarget active drug supplement, we also investigated the anti-HIV-1 activity of Hemidesmus indicus, an Ayurveda medicinal plant containing Lupeol. Results supported the potential of this plant as a valuable multitarget active drug source. In fact, by virtue of its numerous active metabolites, H. indicus was able to inhibit not only the RT-associated RNase H function, but also the HIV-1 RT-associated RNA-dependent DNA polymerase activity and the cellular α-glucosidase.
Francesca, E., Manuela, M., Claudia Del Vecchio, ., Ilaria, C., Simona, D., Angela, C., et al. (2017). Multi-target activity of Hemidesmus indicus decoction against innovative HIV-1 drug targets and characterization of Lupeol mode of action. PATHOGENS AND DISEASE, 75(6), 1-5 [10.1093/femspd/ftx065].
Multi-target activity of Hemidesmus indicus decoction against innovative HIV-1 drug targets and characterization of Lupeol mode of action
Manuela Mandrone;Mariacaterina Lianza;Ferruccio Poli;
2017
Abstract
Despite the availability of several anti-retrovirals, there is still an urgent need for developing novel therapeutic strategies and finding new drugs against underexplored HIV-1 targets. Among them, there are the HIV-1 reverse transcriptase (RT)-associated ribonuclease H (RNase H) function and the cellular α-glucosidase, involved in the control mechanisms of N-linked glycoproteins formation in the endoplasmic reticulum. It is known that many natural compounds, such as pentacyclic triterpenes, are a promising class of HIV-1 inhibitors. Hence, here we tested the pentacyclic triterpene Lupeol, showing that it inhibits the HIV-1 RT-associated RNase H function. We then performed combination studies of Lupeol and the active site RNase H inhibitor RDS1759, and blind docking calculations, demonstrating that Lupeol binds to an HIV-1 RT allosteric pocket. On the bases of these results and searching for potential multitarget active drug supplement, we also investigated the anti-HIV-1 activity of Hemidesmus indicus, an Ayurveda medicinal plant containing Lupeol. Results supported the potential of this plant as a valuable multitarget active drug source. In fact, by virtue of its numerous active metabolites, H. indicus was able to inhibit not only the RT-associated RNase H function, but also the HIV-1 RT-associated RNA-dependent DNA polymerase activity and the cellular α-glucosidase.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.