Traditionally, skyline and ranking queries have been treated separately as alternative ways of discovering interesting data in potentially large datasets. While ranking queries adopt a specific scoring function to rank tuples, skyline queries return the set of non-dominated tuples and are independent of attribute scales and scoring functions. Ranking queries are thus less general, but usually cheaper to compute and widely used in data management systems. We propose a framework to seamlessly integrate these two approaches by introducing the notion of restricted skyline queries (R-skylines). We propose R-skyline operators that generalize both skyline and ranking queries by applying the notion of dominance to a set of scoring functions of interest. Such sets can be characterized, e.g., by imposing constraints on the function's parameters, such as the weights in a linear scoring function. We discuss the formal properties of these new operators, show how to implement them efficiently, and evaluate them on both synthetic and real datasets.

Paolo, C., Davide, M. (2017). Reconciling Skyline and Ranking Queries. PROCEEDINGS OF THE VLDB ENDOWMENT, 10(11), 1454-1465 [10.14778/3137628.3137653].

Reconciling Skyline and Ranking Queries

Paolo Ciaccia;
2017

Abstract

Traditionally, skyline and ranking queries have been treated separately as alternative ways of discovering interesting data in potentially large datasets. While ranking queries adopt a specific scoring function to rank tuples, skyline queries return the set of non-dominated tuples and are independent of attribute scales and scoring functions. Ranking queries are thus less general, but usually cheaper to compute and widely used in data management systems. We propose a framework to seamlessly integrate these two approaches by introducing the notion of restricted skyline queries (R-skylines). We propose R-skyline operators that generalize both skyline and ranking queries by applying the notion of dominance to a set of scoring functions of interest. Such sets can be characterized, e.g., by imposing constraints on the function's parameters, such as the weights in a linear scoring function. We discuss the formal properties of these new operators, show how to implement them efficiently, and evaluate them on both synthetic and real datasets.
2017
Paolo, C., Davide, M. (2017). Reconciling Skyline and Ranking Queries. PROCEEDINGS OF THE VLDB ENDOWMENT, 10(11), 1454-1465 [10.14778/3137628.3137653].
Paolo, Ciaccia; Davide, Martinenghi
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/615606
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 23
social impact