An event in one sensory modality can phase reset brain oscillations concerning another modality [1-5]. In principle, this may result in stimulus-locked periodicity in behavioral performance [6]. Here we considered this possible cross-modal impact of a sound for one of the best-characterized rhythms arising from the visual system, namely occipital alpha-oscillations (8-14 Hz) [7-9]. We presented brief sounds and concurrently recorded electroencephalography (EEG) and/or probed visual cortex excitability (phosphene perception) through occipital transcranial magnetic stimulation (TMS). In a first, TMS-only experiment, phosphene perception rate against time postsound showed a periodic pattern cycling at â¼10 Hz phase-aligned to the sound. In a second, combined TMS-EEG experiment, TMS-trials reproduced the cyclical phosphene pattern and revealed a â¼10 Hz pattern also for EEG-derived measures of occipital cortex reactivity to the TMS pulses. Crucially, EEG-data from intermingled trials without TMS established cross-modal phase-locking of occipitoparietal alpha oscillations. These independently recorded variables, i.e., occipital cortex excitability and reactivity and EEG phase dynamics, were significantly correlated. This shows that cross-modal phase locking of oscillatory visual cortex activity can arise in the human brain to affect perceptual and EEG measures of visual processing in a cyclical manner, consistent with occipital alpha oscillations underlying a rapid cycling of neural excitability in visual areas. © 2012 Elsevier Ltd.
Romei, V., Gross, J., Thut, G. (2012). Sounds reset rhythms of visual cortex and corresponding human visual perception. CURRENT BIOLOGY, 22(9), 807-813 [10.1016/j.cub.2012.03.025].
Sounds reset rhythms of visual cortex and corresponding human visual perception
Romei, Vincenzo
;
2012
Abstract
An event in one sensory modality can phase reset brain oscillations concerning another modality [1-5]. In principle, this may result in stimulus-locked periodicity in behavioral performance [6]. Here we considered this possible cross-modal impact of a sound for one of the best-characterized rhythms arising from the visual system, namely occipital alpha-oscillations (8-14 Hz) [7-9]. We presented brief sounds and concurrently recorded electroencephalography (EEG) and/or probed visual cortex excitability (phosphene perception) through occipital transcranial magnetic stimulation (TMS). In a first, TMS-only experiment, phosphene perception rate against time postsound showed a periodic pattern cycling at â¼10 Hz phase-aligned to the sound. In a second, combined TMS-EEG experiment, TMS-trials reproduced the cyclical phosphene pattern and revealed a â¼10 Hz pattern also for EEG-derived measures of occipital cortex reactivity to the TMS pulses. Crucially, EEG-data from intermingled trials without TMS established cross-modal phase-locking of occipitoparietal alpha oscillations. These independently recorded variables, i.e., occipital cortex excitability and reactivity and EEG phase dynamics, were significantly correlated. This shows that cross-modal phase locking of oscillatory visual cortex activity can arise in the human brain to affect perceptual and EEG measures of visual processing in a cyclical manner, consistent with occipital alpha oscillations underlying a rapid cycling of neural excitability in visual areas. © 2012 Elsevier Ltd.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.