In this paper we construct some nonlocal operators in the Heisenberg group. Specifically, starting from the Grünwald-Letnikov derivative and Marchaud derivative in the Euclidean setting, we revisit those definitions with respect to the one of the fractional Laplace operator. Then, we define some nonlocal operators in the non-commutative structure of the first Heisenberg group adapting the approach applied in the Euclidean case to the new framework.

Ferrari, F. (2017). Some Nonlocal Operators in the First Heisenberg Group. FRACTAL AND FRACTIONAL, 1(1), 1-17 [10.3390/fractalfract1010015].

Some Nonlocal Operators in the First Heisenberg Group

Ferrari, Fausto
2017

Abstract

In this paper we construct some nonlocal operators in the Heisenberg group. Specifically, starting from the Grünwald-Letnikov derivative and Marchaud derivative in the Euclidean setting, we revisit those definitions with respect to the one of the fractional Laplace operator. Then, we define some nonlocal operators in the non-commutative structure of the first Heisenberg group adapting the approach applied in the Euclidean case to the new framework.
2017
Ferrari, F. (2017). Some Nonlocal Operators in the First Heisenberg Group. FRACTAL AND FRACTIONAL, 1(1), 1-17 [10.3390/fractalfract1010015].
Ferrari, Fausto
File in questo prodotto:
File Dimensione Formato  
fractalfract-01-00015-v2.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 300.41 kB
Formato Adobe PDF
300.41 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/615227
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 7
social impact