Consumer contracts too often present clauses that are potentially unfair to the subscriber. We present an experimental study where machine learning is employed to automatically detect such potentially unfair clauses in online contracts. Results show that the proposed system could provide a valuable tool for lawyers and consumers alike.

Lippi, M., Palka, P., Contissa, G., Lagioia, F., Micklitz, H., Panagis, Y., et al. (2017). Automated detection of unfair clauses in online consumer contracts. ;Nieuwe Hemweg 6B : IOS Press [10.3233/978-1-61499-838-9-145].

Automated detection of unfair clauses in online consumer contracts

Contissa, Giuseppe;Lagioia, Francesca;Sartor, Giovanni;Torroni, Paolo
2017

Abstract

Consumer contracts too often present clauses that are potentially unfair to the subscriber. We present an experimental study where machine learning is employed to automatically detect such potentially unfair clauses in online contracts. Results show that the proposed system could provide a valuable tool for lawyers and consumers alike.
2017
Frontiers in Artificial Intelligence and Applications
145
154
Lippi, M., Palka, P., Contissa, G., Lagioia, F., Micklitz, H., Panagis, Y., et al. (2017). Automated detection of unfair clauses in online consumer contracts. ;Nieuwe Hemweg 6B : IOS Press [10.3233/978-1-61499-838-9-145].
Lippi, Marco; Palka, Przemyslaw; Contissa, Giuseppe; Lagioia, Francesca; Micklitz, Hans-Wolfgang; Panagis, Yannis; Sartor, Giovanni; Torroni, Paolo...espandi
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/614844
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
social impact