There is an increasing interest among real-time systems architects for multi- and many-core accelerated platforms. The main obstacle towards the adoption of such devices within industrial settings is related to the difficulties in tightly estimating the multiple interferences that may arise among the parallel components of the system. This in particular concerns concurrent accesses to shared memory and communication resources. Existing worst-case execution time analyses are extremely pessimistic, especially when adopted for systems composed of hundreds-tothousands of cores. This significantly limits the potential for the adoption of these platforms in real-time systems. In this paper, we study how the predictable execution model (PREM), a memory-aware approach to enable timing-predictability in realtime systems, can be successfully adopted on multi- and manycore heterogeneous platforms. Using a state-of-the-art multi-core platform as a testbed, we validate that it is possible to obtain an order-of-magnitude improvement in the WCET bounds of parallel applications, if data movements are adequately orchestrated in accordance with PREM. We identify which system parameters mostly affect the tremendous performance opportunities offered by this approach, both on average and in the worst case, moving the first step towards predictable many-core systems.
Burgio, P., Marongiu, A., Valente, P., Bertogna, M. (2015). A memory-centric approach to enable timing-predictability within embedded many-core accelerators. Institute of Electrical and Electronics Engineers Inc. [10.1109/RTEST.2015.7369851].
A memory-centric approach to enable timing-predictability within embedded many-core accelerators
Marongiu, Andrea;
2015
Abstract
There is an increasing interest among real-time systems architects for multi- and many-core accelerated platforms. The main obstacle towards the adoption of such devices within industrial settings is related to the difficulties in tightly estimating the multiple interferences that may arise among the parallel components of the system. This in particular concerns concurrent accesses to shared memory and communication resources. Existing worst-case execution time analyses are extremely pessimistic, especially when adopted for systems composed of hundreds-tothousands of cores. This significantly limits the potential for the adoption of these platforms in real-time systems. In this paper, we study how the predictable execution model (PREM), a memory-aware approach to enable timing-predictability in realtime systems, can be successfully adopted on multi- and manycore heterogeneous platforms. Using a state-of-the-art multi-core platform as a testbed, we validate that it is possible to obtain an order-of-magnitude improvement in the WCET bounds of parallel applications, if data movements are adequately orchestrated in accordance with PREM. We identify which system parameters mostly affect the tremendous performance opportunities offered by this approach, both on average and in the worst case, moving the first step towards predictable many-core systems.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.