We study closed-string moduli stabilization in Higgs-otic inflation in Type IIB orientifold backgrounds with fluxes. In this setup large-field inflation is driven by the vacuum energy of mobile D7-branes. Imaginary selfdual (ISD) three-form fluxes in the background source a μ-term and the necessary monodromy for large field excursions while imaginary anti-selfdual (IASD) three-form fluxes are sourced by non-perturbative contri-butions to the superpotential necessary for moduli stabilization. We analyze Kähler moduli stabilization and backreaction on the inflaton potential in detail. Confirming results in the recent literature, we find that integrating out heavy Kähler moduli leads to a controlled flattening of the inflaton potential. We quantify the flux tuning necessary for stability even during large-field inflation. Moreover, we study the backreaction of supersymmetrically stabilized complex structure moduli and the axio-dilaton in the Kähler metric of the inflaton. Contrary to previous findings, this backreaction can be pushed far out in field space if a similar flux tuning as in the Kähler sector is possible. This allows for a trans-Planckian field range large enough to support inflation.
Sjoerd, B., Ibanez, L.E., Francisco Soares Verissimo Gil Pedro, ., Irene, V., Clemens, W. (2016). The DBI Action, Higher-derivative Supergravity, and Flattening Inflaton Potentials. JOURNAL OF HIGH ENERGY PHYSICS, 05, 1-22 [10.1007/JHEP05(2016)095].
The DBI Action, Higher-derivative Supergravity, and Flattening Inflaton Potentials
Francisco Soares Verissimo Gil Pedro;
2016
Abstract
We study closed-string moduli stabilization in Higgs-otic inflation in Type IIB orientifold backgrounds with fluxes. In this setup large-field inflation is driven by the vacuum energy of mobile D7-branes. Imaginary selfdual (ISD) three-form fluxes in the background source a μ-term and the necessary monodromy for large field excursions while imaginary anti-selfdual (IASD) three-form fluxes are sourced by non-perturbative contri-butions to the superpotential necessary for moduli stabilization. We analyze Kähler moduli stabilization and backreaction on the inflaton potential in detail. Confirming results in the recent literature, we find that integrating out heavy Kähler moduli leads to a controlled flattening of the inflaton potential. We quantify the flux tuning necessary for stability even during large-field inflation. Moreover, we study the backreaction of supersymmetrically stabilized complex structure moduli and the axio-dilaton in the Kähler metric of the inflaton. Contrary to previous findings, this backreaction can be pushed far out in field space if a similar flux tuning as in the Kähler sector is possible. This allows for a trans-Planckian field range large enough to support inflation.File | Dimensione | Formato | |
---|---|---|---|
Bielleman2016_Article_TheDBIActionHigher-derivativeS.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
514.23 kB
Formato
Adobe PDF
|
514.23 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.