BACKGROUND 1,1,2,2-tetrachloroethane (TeCA) has been generally considered as non-biodegradable under aerobic conditions, while its complete biodegradation was reported with microbial consortia growing anaerobically. This study describes TeCA aerobic co-metabolic degradation by the propanotroph Rhodococcus aetherivorans strain TPA isolated from a TeCA-degrading consortium. RESULTS R. aetherivorans TPA was able to grow on aliphatic hydrocarbons from propane to pentane and on gaseous n-alkane metabolic intermediates. The Michaelis–Menten model allowed a satisfactory fit of the TPA propane utilization rates under resting cell conditions, while the TeCA degradation rates were successfully interpolated with Andrew's inhibition model. A significant propane–TeCA mutual inhibition was observed, although the results did not allow distinguishing between competitive and non-competitive inhibition. Among different bioreactor options for the on-site bioremediation of TeCA-contaminated groundwater, a single suspended-cell continuous stirred-tank reactor (CSTR) appeared to be the optimal one. CONCLUSIONS This study provides for the first time the kinetic and microbiological characterization of a bacterial strain capable of degrading TeCA under aerobic conditions.

Aerobic cometabolism of 1,1,2,2-tetrachloroethane by Rhodococcus aetherivorans TPA grown on propane: kinetic study and bioreactor configuration analysis

Cappelletti, Martina;Pinelli, Davide;Fedi, Stefano;Zannoni, Davide;Frascari, Dario
2018

Abstract

BACKGROUND 1,1,2,2-tetrachloroethane (TeCA) has been generally considered as non-biodegradable under aerobic conditions, while its complete biodegradation was reported with microbial consortia growing anaerobically. This study describes TeCA aerobic co-metabolic degradation by the propanotroph Rhodococcus aetherivorans strain TPA isolated from a TeCA-degrading consortium. RESULTS R. aetherivorans TPA was able to grow on aliphatic hydrocarbons from propane to pentane and on gaseous n-alkane metabolic intermediates. The Michaelis–Menten model allowed a satisfactory fit of the TPA propane utilization rates under resting cell conditions, while the TeCA degradation rates were successfully interpolated with Andrew's inhibition model. A significant propane–TeCA mutual inhibition was observed, although the results did not allow distinguishing between competitive and non-competitive inhibition. Among different bioreactor options for the on-site bioremediation of TeCA-contaminated groundwater, a single suspended-cell continuous stirred-tank reactor (CSTR) appeared to be the optimal one. CONCLUSIONS This study provides for the first time the kinetic and microbiological characterization of a bacterial strain capable of degrading TeCA under aerobic conditions.
2018
Cappelletti, Martina; Pinelli, Davide; Fedi, Stefano; Zannoni, Davide; Frascari, Dario
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/613396
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
social impact