Hydroassemblies is a research thesis that investigates the architectural potential of a unit-based modular system that can recursively grow in space guided by hydrodynamic principles in order to generate intricate tectonic assemblies, integrating the roles of spatial articulator, water collector/distributor and plant cultivation substrate to foster a symbiotic relation with the urban environment. By implementing principles of circulatory systems in biology, the authors developed a system that grows through recursive formation of loops and articulates its tectonic via a continuous, interconnected branching network. The founding process improves upon a combinatorial algorithm of discrete parts, considering how iterative interactions at the local level have a feedback impact on the growth process at the whole system scale. The paper explores how features, spatial and perceptive qualities, affordances and opportunities emerge at the global scale of the formation from the interplay of local behavioral principles and environmental conditions. The provided implementation is a proof of concept of the production of complex qualities by means of massive quantities of simple elements and interactions.

Castellari, D., Erioli, A. (2017). Hydroassemblies - Unit-based system for the symbiosis of urban spaces and greeneries through hydraulic driven tectonics.

Hydroassemblies - Unit-based system for the symbiosis of urban spaces and greeneries through hydraulic driven tectonics

CASTELLARI, DARIO
;
Erioli A.
2017

Abstract

Hydroassemblies is a research thesis that investigates the architectural potential of a unit-based modular system that can recursively grow in space guided by hydrodynamic principles in order to generate intricate tectonic assemblies, integrating the roles of spatial articulator, water collector/distributor and plant cultivation substrate to foster a symbiotic relation with the urban environment. By implementing principles of circulatory systems in biology, the authors developed a system that grows through recursive formation of loops and articulates its tectonic via a continuous, interconnected branching network. The founding process improves upon a combinatorial algorithm of discrete parts, considering how iterative interactions at the local level have a feedback impact on the growth process at the whole system scale. The paper explores how features, spatial and perceptive qualities, affordances and opportunities emerge at the global scale of the formation from the interplay of local behavioral principles and environmental conditions. The provided implementation is a proof of concept of the production of complex qualities by means of massive quantities of simple elements and interactions.
2017
ShoCK! - Sharing Computational Knowledge! - Proceedings of the 35th eCAADe Conference - Volume 1
661
670
Castellari, D., Erioli, A. (2017). Hydroassemblies - Unit-based system for the symbiosis of urban spaces and greeneries through hydraulic driven tectonics.
Castellari, Dario; Erioli, Alessio
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/611869
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact