Correlative evidence provides support for the idea that brain oscillations underpin neural computations. Recent work using rhythmic stimulation techniques in humans provide causal evidence but the interactions of these external signals with intrinsic rhythmicity remain unclear. Here, we show that sensorimotor cortex follows externally applied rhythmic TMS (rTMS) stimulation in the beta-band but that the elicited responses are strongest at the intrinsic individual beta peak frequency. While these entrainment effects are of short duration, even subthreshold rTMS pulses propagate through the network and elicit significant cortico-spinal coupling, particularly when stimulated at the individual beta-frequency.Our results show that externally enforced rhythmicity interacts with intrinsic brain rhythms such that the individual peak frequency determines the effect of rTMS. The observed downstream spinal effect at the resonance frequency provides evidence for the causal role of brain rhythms for signal propagation.

Causal evidence that intrinsic beta-frequency is relevant for enhanced signal propagation in the motor system as shown through rhythmic TMS / Romei, Vincenzo; Bauer, Markus; Brooks, Joseph L.; Economides, Marcos; Penny, Will; Thut, Gregor; Driver, Jon; Bestmann, Sven. - In: NEUROIMAGE. - ISSN 1053-8119. - STAMPA. - 126:(2016), pp. 120-130. [10.1016/j.neuroimage.2015.11.020]

Causal evidence that intrinsic beta-frequency is relevant for enhanced signal propagation in the motor system as shown through rhythmic TMS

Romei, Vincenzo
;
2016

Abstract

Correlative evidence provides support for the idea that brain oscillations underpin neural computations. Recent work using rhythmic stimulation techniques in humans provide causal evidence but the interactions of these external signals with intrinsic rhythmicity remain unclear. Here, we show that sensorimotor cortex follows externally applied rhythmic TMS (rTMS) stimulation in the beta-band but that the elicited responses are strongest at the intrinsic individual beta peak frequency. While these entrainment effects are of short duration, even subthreshold rTMS pulses propagate through the network and elicit significant cortico-spinal coupling, particularly when stimulated at the individual beta-frequency.Our results show that externally enforced rhythmicity interacts with intrinsic brain rhythms such that the individual peak frequency determines the effect of rTMS. The observed downstream spinal effect at the resonance frequency provides evidence for the causal role of brain rhythms for signal propagation.
2016
Causal evidence that intrinsic beta-frequency is relevant for enhanced signal propagation in the motor system as shown through rhythmic TMS / Romei, Vincenzo; Bauer, Markus; Brooks, Joseph L.; Economides, Marcos; Penny, Will; Thut, Gregor; Driver, Jon; Bestmann, Sven. - In: NEUROIMAGE. - ISSN 1053-8119. - STAMPA. - 126:(2016), pp. 120-130. [10.1016/j.neuroimage.2015.11.020]
Romei, Vincenzo; Bauer, Markus; Brooks, Joseph L.; Economides, Marcos; Penny, Will; Thut, Gregor; Driver, Jon; Bestmann, Sven
File in questo prodotto:
File Dimensione Formato  
Romei_NeuroImage_2016.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 1.8 MB
Formato Adobe PDF
1.8 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/611639
Citazioni
  • ???jsp.display-item.citation.pmc??? 28
  • Scopus 59
  • ???jsp.display-item.citation.isi??? 59
social impact