In the present paper we analyse the American option valuation problem in a stochastic volatility model when transaction costs are taken into account. We shall show that it can be formulated as a singular stochastic optimal control problem, proving the existence and uniqueness of the viscosity solution for the associated Hamilton-Jacobi-Bellman partial differential equation. Moreover, after performing a dimensionality reduction through a suitable choice of the utility function, we shall provide a numerical example illustrating how American options prices can be computed in the present modelling framework.

Cosso, A., Marazzina, D., Sgarra, C. (2015). American option valuation in a stochastic volatility model with transaction costs. STOCHASTICS, 87, 518-536 [10.1080/17442508.2014.989525].

American option valuation in a stochastic volatility model with transaction costs

Cosso, Andrea;
2015

Abstract

In the present paper we analyse the American option valuation problem in a stochastic volatility model when transaction costs are taken into account. We shall show that it can be formulated as a singular stochastic optimal control problem, proving the existence and uniqueness of the viscosity solution for the associated Hamilton-Jacobi-Bellman partial differential equation. Moreover, after performing a dimensionality reduction through a suitable choice of the utility function, we shall provide a numerical example illustrating how American options prices can be computed in the present modelling framework.
2015
Cosso, A., Marazzina, D., Sgarra, C. (2015). American option valuation in a stochastic volatility model with transaction costs. STOCHASTICS, 87, 518-536 [10.1080/17442508.2014.989525].
Cosso, Andrea; Marazzina, Daniele; Sgarra, Carlo
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/610831
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact