In vitro surrogate models of human erythropoiesis made many contributions to our understanding of the extrinsic and intrinsic regulation of this process in vivo and how they are altered in erythroid disorders. In the past, variability among the levels of hemoglobin F produced by adult erythroblasts generated in vitro by different laboratories identified stage of maturation, fetal bovine serum, and accessory cells as "confounding factors," that is, parameters intrinsically wired in the experimental approach that bias the results observed. The discovery of these factors facilitated the identification of drugs that accelerate terminal maturation or activate specific signaling pathways for the treatment of hemoglobinopathies. It also inspired studies to understand how erythropoiesis is regulated by macrophages present in the erythroid islands. Recent cell culture advances have greatly increased the number of human erythroid cells that can be generated in vitro and are used as experimental models to study diseases, such as Diamond Blackfan Anemia, which were previously poorly amenable to investigation. However, in addition to the confounding factors already identified, improvement in the culture models has introduced novel confounding factors, such as possible interactions between signaling from cKIT, the receptor for stem cell factor, and from the glucocorticoid receptor, the cell proliferation potential and the clinical state of the patients. This review will illustrate these new confounding factors and discuss their clinical translation potential to improve our understanding of Diamond Blackfan Anemia and other erythroid disorders.

FRANCO MIGLIACCIO, A.R., Varricchio, L. (2018). Concise Review: Advanced Cell Culture Models for Diamond Blackfan Anemia and Other Erythroid Disorders. STEM CELLS, 36(2), 172-179 [10.1002/stem.2735].

Concise Review: Advanced Cell Culture Models for Diamond Blackfan Anemia and Other Erythroid Disorders

FRANCO MIGLIACCIO, ANNA RITA;
2018

Abstract

In vitro surrogate models of human erythropoiesis made many contributions to our understanding of the extrinsic and intrinsic regulation of this process in vivo and how they are altered in erythroid disorders. In the past, variability among the levels of hemoglobin F produced by adult erythroblasts generated in vitro by different laboratories identified stage of maturation, fetal bovine serum, and accessory cells as "confounding factors," that is, parameters intrinsically wired in the experimental approach that bias the results observed. The discovery of these factors facilitated the identification of drugs that accelerate terminal maturation or activate specific signaling pathways for the treatment of hemoglobinopathies. It also inspired studies to understand how erythropoiesis is regulated by macrophages present in the erythroid islands. Recent cell culture advances have greatly increased the number of human erythroid cells that can be generated in vitro and are used as experimental models to study diseases, such as Diamond Blackfan Anemia, which were previously poorly amenable to investigation. However, in addition to the confounding factors already identified, improvement in the culture models has introduced novel confounding factors, such as possible interactions between signaling from cKIT, the receptor for stem cell factor, and from the glucocorticoid receptor, the cell proliferation potential and the clinical state of the patients. This review will illustrate these new confounding factors and discuss their clinical translation potential to improve our understanding of Diamond Blackfan Anemia and other erythroid disorders.
2018
FRANCO MIGLIACCIO, A.R., Varricchio, L. (2018). Concise Review: Advanced Cell Culture Models for Diamond Blackfan Anemia and Other Erythroid Disorders. STEM CELLS, 36(2), 172-179 [10.1002/stem.2735].
FRANCO MIGLIACCIO, ANNA RITA; Varricchio, Lilian
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/610630
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact