The electronic spectra of the HBBr and DBBr free radicals have been studied in depth. These species were prepared in a pulsed electric discharge jet using a precursor mixture of BBr3 vapor and H2 or D2 in high pressure argon. Transitions to the electronic excited state of the jet-cooled radicals were probed with laser-induced fluorescence and the ground state energy levels were measured from the single vibronic level emission spectra. HBBr has an extensive band system in the red which involves a linear-bent transition between the two Renner-Teller components of what would be a 2Π state at linearity. We have used high level ab initio theory to calculate potential energy surfaces for the bent 2A' ground state and the linear Ã2A''(Pi)  excited state and we have determined the ro-vibronic energy levels variationally, including spin orbit effects. The correspondence between the computed and experimentally observed transition frequencies, upper state level symmetries, and H and B isotope shifts was used to make reliable assignments. We have shown that the ground state barriers to linearity, which range from 10 000 cm-1 in HBF to 2700 cm-1 in BH2, are inversely related to the energy of the first excited 2Σ (2A') electronic state. This suggests that a vibronic coupling mechanism is responsible for the nonlinear equilibrium geometries of the ground states of the HBX free radicals.

An experimental and theoretical study of the à 2A'' (Pi) -X2A' band system of the jet-cooled HBBr/DBBr free radical / Gharaibeh, Mohammed; Clouthier, Dennis J.; Tarroni, Riccardo. - In: THE JOURNAL OF CHEMICAL PHYSICS. - ISSN 0021-9606. - STAMPA. - 144:23(2016), pp. 234309.234309-234309.234309. [10.1063/1.4953771]

An experimental and theoretical study of the Ã2A'' (Pi) -X2A' band system of the jet-cooled HBBr/DBBr free radical

Tarroni, Riccardo
2016

Abstract

The electronic spectra of the HBBr and DBBr free radicals have been studied in depth. These species were prepared in a pulsed electric discharge jet using a precursor mixture of BBr3 vapor and H2 or D2 in high pressure argon. Transitions to the electronic excited state of the jet-cooled radicals were probed with laser-induced fluorescence and the ground state energy levels were measured from the single vibronic level emission spectra. HBBr has an extensive band system in the red which involves a linear-bent transition between the two Renner-Teller components of what would be a 2Π state at linearity. We have used high level ab initio theory to calculate potential energy surfaces for the bent 2A' ground state and the linear Ã2A''(Pi)  excited state and we have determined the ro-vibronic energy levels variationally, including spin orbit effects. The correspondence between the computed and experimentally observed transition frequencies, upper state level symmetries, and H and B isotope shifts was used to make reliable assignments. We have shown that the ground state barriers to linearity, which range from 10 000 cm-1 in HBF to 2700 cm-1 in BH2, are inversely related to the energy of the first excited 2Σ (2A') electronic state. This suggests that a vibronic coupling mechanism is responsible for the nonlinear equilibrium geometries of the ground states of the HBX free radicals.
2016
An experimental and theoretical study of the à 2A'' (Pi) -X2A' band system of the jet-cooled HBBr/DBBr free radical / Gharaibeh, Mohammed; Clouthier, Dennis J.; Tarroni, Riccardo. - In: THE JOURNAL OF CHEMICAL PHYSICS. - ISSN 0021-9606. - STAMPA. - 144:23(2016), pp. 234309.234309-234309.234309. [10.1063/1.4953771]
Gharaibeh, Mohammed; Clouthier, Dennis J.; Tarroni, Riccardo
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/610615
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact