A non-linear 2D lumped mass model of a single-stage spur planetary gear system with time-varying mesh stiffness, bearing compliance and non-smooth non-linearity due to backlash is taken into account. The time-varying meshing stiffness is evaluated by means of a non-linear finite element model, through an accurate evaluation of global and local tooth deformation. The non-linear dynamic behaviour of the system is analysed over a reasonable range of rotation speed and torque. The possibility of occurrences of different dynamic phenomena and instability of the system with respect to the bearing compliance and operating parameters are also evaluated. The possibility of dynamic imbalance of equally-spaced planetary gears in the presence of chaotic regimes is discussed. Such imbalance may lead to unexpected high-level stresses on bearings and gears. The effect of tooth profile modification at the sun-planet and ring-planet meshes on the vibration behaviour of the planetary gear system is also investigated in this paper. In order to avoid modification on the ring gear, both tip and root reliefs are considered for sun and planet gears.

Dynamic imbalance of high-speed planetary gears

Masoumi, Asma
Membro del Collaboration Group
;
Strozzi, Matteo
Membro del Collaboration Group
2017

Abstract

A non-linear 2D lumped mass model of a single-stage spur planetary gear system with time-varying mesh stiffness, bearing compliance and non-smooth non-linearity due to backlash is taken into account. The time-varying meshing stiffness is evaluated by means of a non-linear finite element model, through an accurate evaluation of global and local tooth deformation. The non-linear dynamic behaviour of the system is analysed over a reasonable range of rotation speed and torque. The possibility of occurrences of different dynamic phenomena and instability of the system with respect to the bearing compliance and operating parameters are also evaluated. The possibility of dynamic imbalance of equally-spaced planetary gears in the presence of chaotic regimes is discussed. Such imbalance may lead to unexpected high-level stresses on bearings and gears. The effect of tooth profile modification at the sun-planet and ring-planet meshes on the vibration behaviour of the planetary gear system is also investigated in this paper. In order to avoid modification on the ring gear, both tip and root reliefs are considered for sun and planet gears.
2017
Masoumi, Asma; Barbieri, Marco; Pellicano, Francesco; Zippo, Antonio; Strozzi, Matteo
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/610469
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact