The present work is concerned with the analysis of low-frequency linear vibrations of SWNTs: two approaches are presented: a fully analytical method based on a simplified theory and a semi-analytical method based on the theory of thin shells. The semi-analytical approach (shortly called “numerical approach”) is based on the Sanders-Koiter shell theory and the Rayleigh-Ritz numerical procedure. The nanotube deformation is described in terms of longitudinal, circumferential and radial displacement fields, which are expanded by means of a double mixed series based on Chebyshev polynomials. The Rayleigh-Ritz method is then applied to obtain numerically approximate natural frequencies and mode shapes. The second approach is based on a reduced version of the Sanders-Koiter shell theory, obtained by assuming small ring and tangential shear deformations. These assumptions allow to condense both the longitudinal and the circumferential displacement fields. A fourth-order partial differential equation for the radial displacement field is derived. Eigenfunctions are formally obtained analytically, then the numerical solution of the dispersion equation gives the natural frequencies and the corresponding normal modes. The methods are fully validated by comparing the natural frequencies of the SWNTs with data available in literature, namely: experiments, molecular dynamics simulations and finite element analyses. A comparison between the results of the numerical and analytical approach is carried out in order to check the accuracy of the last one. It is worthwhile to stress that the analytical model allows to obtain results with very low computational effort. On the other hand the numerical approach is able to handle the most realistic boundary conditions of SWNTs (free-free, clamped-free) with extreme accuracy. Both methods are suitable for a forthcoming extension to multi-walled nanotubes and nonlinear vibrations.

Eigenfrequencies and vibration modes of carbon nanotubes / Strozzi, Matteo; Manevitch, Leonid I.; Smirnov, Valeri V.; Shepelev, Denis S.; Pellicano, Francesco. - STAMPA. - 106:(2014), pp. 1-19. (Intervento presentato al convegno 12th International Conference on Computational Structures Technology CST 2014 tenutosi a Napoli (Italia) nel 02-05 Settembre 2014) [10.4203/ccp.106.32].

Eigenfrequencies and vibration modes of carbon nanotubes

Strozzi, Matteo
Membro del Collaboration Group
;
2014

Abstract

The present work is concerned with the analysis of low-frequency linear vibrations of SWNTs: two approaches are presented: a fully analytical method based on a simplified theory and a semi-analytical method based on the theory of thin shells. The semi-analytical approach (shortly called “numerical approach”) is based on the Sanders-Koiter shell theory and the Rayleigh-Ritz numerical procedure. The nanotube deformation is described in terms of longitudinal, circumferential and radial displacement fields, which are expanded by means of a double mixed series based on Chebyshev polynomials. The Rayleigh-Ritz method is then applied to obtain numerically approximate natural frequencies and mode shapes. The second approach is based on a reduced version of the Sanders-Koiter shell theory, obtained by assuming small ring and tangential shear deformations. These assumptions allow to condense both the longitudinal and the circumferential displacement fields. A fourth-order partial differential equation for the radial displacement field is derived. Eigenfunctions are formally obtained analytically, then the numerical solution of the dispersion equation gives the natural frequencies and the corresponding normal modes. The methods are fully validated by comparing the natural frequencies of the SWNTs with data available in literature, namely: experiments, molecular dynamics simulations and finite element analyses. A comparison between the results of the numerical and analytical approach is carried out in order to check the accuracy of the last one. It is worthwhile to stress that the analytical model allows to obtain results with very low computational effort. On the other hand the numerical approach is able to handle the most realistic boundary conditions of SWNTs (free-free, clamped-free) with extreme accuracy. Both methods are suitable for a forthcoming extension to multi-walled nanotubes and nonlinear vibrations.
2014
Proceedings of the 12th International Conference on Computational Structures Technology CST 2014
1
19
Eigenfrequencies and vibration modes of carbon nanotubes / Strozzi, Matteo; Manevitch, Leonid I.; Smirnov, Valeri V.; Shepelev, Denis S.; Pellicano, Francesco. - STAMPA. - 106:(2014), pp. 1-19. (Intervento presentato al convegno 12th International Conference on Computational Structures Technology CST 2014 tenutosi a Napoli (Italia) nel 02-05 Settembre 2014) [10.4203/ccp.106.32].
Strozzi, Matteo; Manevitch, Leonid I.; Smirnov, Valeri V.; Shepelev, Denis S.; Pellicano, Francesco
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/610306
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact