Respiratory syncytial virus (RSV) belongs to the recently defined Pneumoviridae family, Orthopneumovirus genus. It is the leading cause of acute bronchiolitis and one of the most common causes of infant viral death worldwide, with infection typically occurring as recurrent seasonal epidemics. There are two major RSV subtypes, A and B, and multiple genotypes, which can coexist during RSV epidemic season every year and result in different disease severity. Recently, new RSV genomic sequences and analysis of RSV genotypes have provided important data for understanding RSV pathogenesis. Novel RSV strains do spread rapidly and widely, and a knowledge of viral strainspecific phenotypes may be important in order to include the more virulent strains in future therapeutical options and vaccine development. Here we summarize recent literature exploring genetic and molecular aspects related to RSV infection, their impact on the clinical course of the disease and their potential utility in the development of safe and effective preventive and therapeutic strategies.
Vandini, S., Biagi, C., Lanari, M. (2017). Respiratory syncytial virus: The influence of serotype and genotype variability on clinical course of infection. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 18(8), 1-17 [10.3390/ijms18081717].
Respiratory syncytial virus: The influence of serotype and genotype variability on clinical course of infection
VANDINI, SILVIA;BIAGI, CARLOTTA;LANARI, MARCELLO
2017
Abstract
Respiratory syncytial virus (RSV) belongs to the recently defined Pneumoviridae family, Orthopneumovirus genus. It is the leading cause of acute bronchiolitis and one of the most common causes of infant viral death worldwide, with infection typically occurring as recurrent seasonal epidemics. There are two major RSV subtypes, A and B, and multiple genotypes, which can coexist during RSV epidemic season every year and result in different disease severity. Recently, new RSV genomic sequences and analysis of RSV genotypes have provided important data for understanding RSV pathogenesis. Novel RSV strains do spread rapidly and widely, and a knowledge of viral strainspecific phenotypes may be important in order to include the more virulent strains in future therapeutical options and vaccine development. Here we summarize recent literature exploring genetic and molecular aspects related to RSV infection, their impact on the clinical course of the disease and their potential utility in the development of safe and effective preventive and therapeutic strategies.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.