The present work introduces optimal modifiсation of core-shell composite nanomaterial, where small (2–8 nm) Ag0 nanoparticles are deposited onto large (about 140 nm) silica spheres for application in oxidative catalysis. The size of Ag0 and density of its deposition onto silica spheres was modified by the post treatment of initially deposited Ag0 (about 30 nm) by hydrogen peroxide in specific conditions. The comparison of catalytic effect of the post-treated and initial SN-Ag0 in electrochemical phosphonation of benzo(thia)oxazoles by diethyl phosphite in oxidative conditions revealed the difference between the composite nanoparticles. In particular, the post-treated SNs-Ag0 nanoparticles exhibit efficient catalytic effect in oxidative conditions resulting in facile and green method for synthesis of phosphonated benzooxa(thia)zoles, while no catalytic effect is observed under the use of larger Ag0 nanoparticles deposited onto silica spheres. The use of Ag0-based nanomaterial in oxidative catalysis had been never demonstrated before.

Fedorenko, S.V., Jilkin, M.E., Gryaznova, T.V., Iurko, E.O., Bochkova, O.D., Mukhametshina, A.R., et al. (2017). Silica Nanospheres Coated by Ultrasmall Ag 0 Nanoparticles for Oxidative Catalytic Application. COLLOIDS AND INTERFACE SCIENCE COMMUNICATIONS, 21, 1-5 [10.1016/j.colcom.2017.10.001].

Silica Nanospheres Coated by Ultrasmall Ag 0 Nanoparticles for Oxidative Catalytic Application

MAZZARO, RAFFAELLO;
2017

Abstract

The present work introduces optimal modifiсation of core-shell composite nanomaterial, where small (2–8 nm) Ag0 nanoparticles are deposited onto large (about 140 nm) silica spheres for application in oxidative catalysis. The size of Ag0 and density of its deposition onto silica spheres was modified by the post treatment of initially deposited Ag0 (about 30 nm) by hydrogen peroxide in specific conditions. The comparison of catalytic effect of the post-treated and initial SN-Ag0 in electrochemical phosphonation of benzo(thia)oxazoles by diethyl phosphite in oxidative conditions revealed the difference between the composite nanoparticles. In particular, the post-treated SNs-Ag0 nanoparticles exhibit efficient catalytic effect in oxidative conditions resulting in facile and green method for synthesis of phosphonated benzooxa(thia)zoles, while no catalytic effect is observed under the use of larger Ag0 nanoparticles deposited onto silica spheres. The use of Ag0-based nanomaterial in oxidative catalysis had been never demonstrated before.
2017
Fedorenko, S.V., Jilkin, M.E., Gryaznova, T.V., Iurko, E.O., Bochkova, O.D., Mukhametshina, A.R., et al. (2017). Silica Nanospheres Coated by Ultrasmall Ag 0 Nanoparticles for Oxidative Catalytic Application. COLLOIDS AND INTERFACE SCIENCE COMMUNICATIONS, 21, 1-5 [10.1016/j.colcom.2017.10.001].
Fedorenko, Svetlana V.; Jilkin, Michail E.; Gryaznova, Tatyana V.; Iurko, Elizaveta O.; Bochkova, Olga D.; Mukhametshina, Alsu R.; Nizameev, Irek R.; ...espandi
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/609546
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 14
social impact