Motivated by the fact that realized measures of volatility are affected by measurement errors, we introduce a new family of discrete-time stochastic volatility models having two measurement equations relating both the observed returns and realized measures to the latent conditional variance.

Giacomo Bormetti, Roberto Casarin, Fulvio Corsi, Giulia Livieri (2017). A stochastic volatility framework with analytical filtering. Firenze : Firenze University Press.

A stochastic volatility framework with analytical filtering

BORMETTI, GIACOMO;LIVIERI, GIULIA
2017

Abstract

Motivated by the fact that realized measures of volatility are affected by measurement errors, we introduce a new family of discrete-time stochastic volatility models having two measurement equations relating both the observed returns and realized measures to the latent conditional variance.
2017
Proceedings of the Conference of the Italian Statistical Society. Statistics and Data Science: new challenges, new generations
205
209
Giacomo Bormetti, Roberto Casarin, Fulvio Corsi, Giulia Livieri (2017). A stochastic volatility framework with analytical filtering. Firenze : Firenze University Press.
Giacomo Bormetti; Roberto Casarin; Fulvio Corsi; Giulia Livieri
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/608430
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact