In this work, we present a system of equations which describes non-isothermal flow in a bidispersive porous medium under conditions of local thermal non-equilibrium. The porous medium consists of macro pores, and in the solid skeleton are cracks or fissures which give rise to micro pores. The temperatures in the solid skeleton and in the fluids in the macro and micro pores are all allowed to be independent. After presenting the general model, we derive a result of universal stability, which guarantees exponential decay of the solution for all initial data. We further present a concrete example by specializing the model to the problem of thermal convection in a layer heated from below.

Franca Franchi, Roberta Nibbi, Brian Straughan (2017). Modelling Bidispersive Local Thermal Non-Equilibrium Flow. FLUIDS, 2(3), 1-10 [10.3390/fluids2030048].

Modelling Bidispersive Local Thermal Non-Equilibrium Flow

FRANCHI, FRANCA;NIBBI, ROBERTA;
2017

Abstract

In this work, we present a system of equations which describes non-isothermal flow in a bidispersive porous medium under conditions of local thermal non-equilibrium. The porous medium consists of macro pores, and in the solid skeleton are cracks or fissures which give rise to micro pores. The temperatures in the solid skeleton and in the fluids in the macro and micro pores are all allowed to be independent. After presenting the general model, we derive a result of universal stability, which guarantees exponential decay of the solution for all initial data. We further present a concrete example by specializing the model to the problem of thermal convection in a layer heated from below.
2017
Franca Franchi, Roberta Nibbi, Brian Straughan (2017). Modelling Bidispersive Local Thermal Non-Equilibrium Flow. FLUIDS, 2(3), 1-10 [10.3390/fluids2030048].
Franca Franchi; Roberta Nibbi; Brian Straughan
File in questo prodotto:
File Dimensione Formato  
fluids-02-00048-v2.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 239.44 kB
Formato Adobe PDF
239.44 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/608097
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact