Freezing of gait (FOG) is a disabling symptom that is common among patients with advanced Parkinson's disease (PD). External cues such as rhythmic auditory stimulation can help PD patients experiencing freezing to resume walking. Wearable systems for automatic freezing detection have been recently developed. However, these systems detect a FOG episode after it has happened. Instead, in this study, a new approach for the prediction of FOG (before it actually happens) is presented. Prediction of FOG might enable preventive cueing, reducing the likelihood that FOG will occur. Moreover, understanding the causes and circumstances of FOG is still an open research problem. Hence, a quantitative characterization of movement patterns just before FOG (the pre- FOG phase) is of great importance. In this study, wearable inertial sensors were used to identify and quantify the characteristics of gait during the pre-FOG phase and compare them with the characteristics of gait that do not precede FOG. The hypothesis of this study is based on the threshold-based model of FOG, which suggests that before FOG occurs, there is a degradation of the gait pattern. Eleven PD subjects were analyzed. Six features extracted from movement signals recorded by inertial sensors showed significant differences between gait and pre-FOG. A classification algorithm was developed in order to test if it is feasible to predict FOG (i.e., detect it before it happens). The aim of the classification procedure was to identify the pre-FOG phase. Results confirm that there is a degradation of gait occurring before freezing. Results also provide preliminary evidence on the feasibility of creating an automatic algorithm to predict FOG. Although some limitations are present, this study shows promising findings for characterizing and identifying pre-FOG patterns, another step toward a better understanding, prediction, and prevention of this disabling symptom.

Palmerini, L., Rocchi, L., Mazilu, S., Gazit, E., Hausdorff, J.M., Chiari, L. (2017). Identification of characteristic motor patterns preceding freezing of gait in Parkinson's disease using wearable sensors. FRONTIERS IN NEUROLOGY, 8, 1-12 [10.3389/fneur.2017.00394].

Identification of characteristic motor patterns preceding freezing of gait in Parkinson's disease using wearable sensors

PALMERINI, LUCA;ROCCHI, LAURA;CHIARI, LORENZO
2017

Abstract

Freezing of gait (FOG) is a disabling symptom that is common among patients with advanced Parkinson's disease (PD). External cues such as rhythmic auditory stimulation can help PD patients experiencing freezing to resume walking. Wearable systems for automatic freezing detection have been recently developed. However, these systems detect a FOG episode after it has happened. Instead, in this study, a new approach for the prediction of FOG (before it actually happens) is presented. Prediction of FOG might enable preventive cueing, reducing the likelihood that FOG will occur. Moreover, understanding the causes and circumstances of FOG is still an open research problem. Hence, a quantitative characterization of movement patterns just before FOG (the pre- FOG phase) is of great importance. In this study, wearable inertial sensors were used to identify and quantify the characteristics of gait during the pre-FOG phase and compare them with the characteristics of gait that do not precede FOG. The hypothesis of this study is based on the threshold-based model of FOG, which suggests that before FOG occurs, there is a degradation of the gait pattern. Eleven PD subjects were analyzed. Six features extracted from movement signals recorded by inertial sensors showed significant differences between gait and pre-FOG. A classification algorithm was developed in order to test if it is feasible to predict FOG (i.e., detect it before it happens). The aim of the classification procedure was to identify the pre-FOG phase. Results confirm that there is a degradation of gait occurring before freezing. Results also provide preliminary evidence on the feasibility of creating an automatic algorithm to predict FOG. Although some limitations are present, this study shows promising findings for characterizing and identifying pre-FOG patterns, another step toward a better understanding, prediction, and prevention of this disabling symptom.
2017
Palmerini, L., Rocchi, L., Mazilu, S., Gazit, E., Hausdorff, J.M., Chiari, L. (2017). Identification of characteristic motor patterns preceding freezing of gait in Parkinson's disease using wearable sensors. FRONTIERS IN NEUROLOGY, 8, 1-12 [10.3389/fneur.2017.00394].
Palmerini, Luca; Rocchi, Laura; Mazilu, Sinziana; Gazit, Eran; Hausdorff, Jeffrey M.; Chiari, Lorenzo
File in questo prodotto:
File Dimensione Formato  
Frontiers Neurology 2017b.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 4.04 MB
Formato Adobe PDF
4.04 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/607393
Citazioni
  • ???jsp.display-item.citation.pmc??? 25
  • Scopus 84
  • ???jsp.display-item.citation.isi??? 72
social impact