The H2020 TOREADOR Project adopts a model-driven architecture to streamline big data analytics and make it widely available to companies as a service. Our work in this context focuses on visualization, in particular on how to automate the translation of the visualization objectives declared by the user into a suitable visualization type. To this end we first define a visualization context based on seven prioritizable coordinates for assessing the user's objectives and describing the data to be visualized; then we propose a skyline-based technique for automatically translating a visualization context into a set of suitable visualization types. Finally, we evaluate our approach on a real use case excerpted from the pilot applications of TOREADOR.

Golfarelli, M., Pirini, T., Rizzi, S. (2017). Goal-Based Selection of Visual Representations for Big Data Analytics. Heidelberg : Springer [10.1007/978-3-319-70625-2_5].

Goal-Based Selection of Visual Representations for Big Data Analytics

GOLFARELLI, MATTEO;PIRINI, TOMMASO;RIZZI, STEFANO
2017

Abstract

The H2020 TOREADOR Project adopts a model-driven architecture to streamline big data analytics and make it widely available to companies as a service. Our work in this context focuses on visualization, in particular on how to automate the translation of the visualization objectives declared by the user into a suitable visualization type. To this end we first define a visualization context based on seven prioritizable coordinates for assessing the user's objectives and describing the data to be visualized; then we propose a skyline-based technique for automatically translating a visualization context into a set of suitable visualization types. Finally, we evaluate our approach on a real use case excerpted from the pilot applications of TOREADOR.
2017
Advances in Conceptual Modeling - ER 2017 Workshops
47
57
Golfarelli, M., Pirini, T., Rizzi, S. (2017). Goal-Based Selection of Visual Representations for Big Data Analytics. Heidelberg : Springer [10.1007/978-3-319-70625-2_5].
Golfarelli, Matteo; Pirini, Tommaso; Rizzi, Stefano
File in questo prodotto:
File Dimensione Formato  
mobid17.pdf

accesso aperto

Tipo: Postprint
Licenza: Licenza per accesso libero gratuito
Dimensione 1.14 MB
Formato Adobe PDF
1.14 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/605940
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 2
social impact