Holocene deposits exhibit distinct, predictable and chronologically constrained facies patterns that are quite useful as appropriate modern analogs for interpreting the ancient record. In this study, we examined the sedimentary response of the Po Plain coastal system to short-term (millennial-scale) relative fluctuations of sea level through high-resolution sequence-stratigraphic analysis of the Holocene succession.Meters-thick parasequences form the building blocks of stratigraphic architecture. Above the Younger Dryas paleosol, a prominent stratigraphic marker that demarcates the transgressive surface, Early Holocene parasequences (#s 1-3) record alternating periods of rapid flooding and gradual shoaling, and are stacked in a retrogradational pattern that mostly reflects stepped, post-glacial eustatic rise. Conversely, Middle to Late Holocene parasequences (#s 4-8) record a complex, pattern of coastal progradation and delta upbuilding that took place following sea-level stabilization at highstand, starting at about 7 cal ky BP. The prominent transgressive surface at the base of parasequence 1 correlates with the period of rapid, global sea-level rise at the onset of the Holocene (MWP-1B), whereas flooding surfaces associated with parasequences 2 and 3 apparently reflect minor Early Holocene eustatic jumps reported in the literature. Changes in shoreline trajectory, parasequence architecture and lithofacies distribution during the following eustatic highstand had, instead, an overwhelming autogenic component, mostly driven by river avulsions, delta lobe switching, local subsidence and sediment compaction. We document a ∼1000-year delayed response of the coastal depositional system to marine incursion, farther inland from the maximum landward position of the shoreline. A dramatic reduction in sediment flux due to fluvial avulsion resulted in marine inundation in back-barrier position, whereas coastal progradation was simultaneously taking place basinwards.We demonstrate that the landward equivalents of marine flooding surfaces (parasequence boundaries) may be defined by brackish and freshwater fossil assemblages, and traced for tens of kilometers into the non-marine realm. This makes millennial-scale parasequences, whether auto- or allogenic in origin, much more powerful than systems tracts for mapping detailed extents and volumes of sediment bodies.The Holocene parasequences of the Po coastal plain, with strong age control and a detailed understanding of sea-level variation, may provide insight into the driving mechanisms and predictability of successions characterized by similar depositional styles, but with poor age constraint, resulting in more robust interpretations of the ancient record.

Global sea-level control on local parasequence architecture from the Holocene record of the Po Plain, Italy

AMOROSI, ALESSANDRO;BRUNO, LUIGI;CAMPO, BRUNO;MORELLI, AGNESE;ROSSI, VERONICA;SCARPONI, DANIELE;
2017

Abstract

Holocene deposits exhibit distinct, predictable and chronologically constrained facies patterns that are quite useful as appropriate modern analogs for interpreting the ancient record. In this study, we examined the sedimentary response of the Po Plain coastal system to short-term (millennial-scale) relative fluctuations of sea level through high-resolution sequence-stratigraphic analysis of the Holocene succession.Meters-thick parasequences form the building blocks of stratigraphic architecture. Above the Younger Dryas paleosol, a prominent stratigraphic marker that demarcates the transgressive surface, Early Holocene parasequences (#s 1-3) record alternating periods of rapid flooding and gradual shoaling, and are stacked in a retrogradational pattern that mostly reflects stepped, post-glacial eustatic rise. Conversely, Middle to Late Holocene parasequences (#s 4-8) record a complex, pattern of coastal progradation and delta upbuilding that took place following sea-level stabilization at highstand, starting at about 7 cal ky BP. The prominent transgressive surface at the base of parasequence 1 correlates with the period of rapid, global sea-level rise at the onset of the Holocene (MWP-1B), whereas flooding surfaces associated with parasequences 2 and 3 apparently reflect minor Early Holocene eustatic jumps reported in the literature. Changes in shoreline trajectory, parasequence architecture and lithofacies distribution during the following eustatic highstand had, instead, an overwhelming autogenic component, mostly driven by river avulsions, delta lobe switching, local subsidence and sediment compaction. We document a ∼1000-year delayed response of the coastal depositional system to marine incursion, farther inland from the maximum landward position of the shoreline. A dramatic reduction in sediment flux due to fluvial avulsion resulted in marine inundation in back-barrier position, whereas coastal progradation was simultaneously taking place basinwards.We demonstrate that the landward equivalents of marine flooding surfaces (parasequence boundaries) may be defined by brackish and freshwater fossil assemblages, and traced for tens of kilometers into the non-marine realm. This makes millennial-scale parasequences, whether auto- or allogenic in origin, much more powerful than systems tracts for mapping detailed extents and volumes of sediment bodies.The Holocene parasequences of the Po coastal plain, with strong age control and a detailed understanding of sea-level variation, may provide insight into the driving mechanisms and predictability of successions characterized by similar depositional styles, but with poor age constraint, resulting in more robust interpretations of the ancient record.
Amorosi, Alessandro; Bruno, Luigi; Campo, Bruno; Morelli, Agnese; Rossi, Veronica; Scarponi, Daniele; Hong, Wan; Bohacs, Kevin M.; Drexler, Tina M.
File in questo prodotto:
File Dimensione Formato  
Amorosi et al 2017 M&PG.pdf

accesso aperto

Tipo: Postprint
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 4.63 MB
Formato Adobe PDF
4.63 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11585/605723
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 76
  • ???jsp.display-item.citation.isi??? 65
social impact