Background: Hyperhomocysteinemia (Hhcy) occurs in about 85% of chronic kidney disease (CKD) patients because of impaired renal metabolism and reduced renal excretion. Folic acid (FA), the synthetic form of vitamin B9, is critical in the conversion of homocysteine (Hcy) to methionine. If there is not enough intake of FA, there is not enough conversion, and Hcy levels are raised. Summary: Hhcy is regarded as an independent predictor of cardiovascular morbidity and mortality in end-stage renal disease. Hhcy exerts its pathogenic action on the main processes involved in the progression of vascular damage. Research has shown Hhcy suggests enhanced risks for inflammation and endothelial injury which lead to cardiovascular disease (CVD), stroke, and CKD. FA has also been shown to improve endothelial function without lowering Hcy, suggesting an alternative explanation for the effect of FA on endothelial function. Recently, the role of FA and Hhcy in CVD and in CKD progression was renewed in some randomized trials. Key Messages: In the general population and in CKD patients, it remains a topic of discussion whether any beneficial effects of FA therapy are to be referred to its direct effect or to a reduction of Hhcy. While waiting for the results of confirmatory trials, it is reasonable to consider FA with or without methylcobalamin supplementation as appropriate adjunctive therapy in patients with CKD.

Folic Acid and Homocysteine in Chronic Kidney Disease and Cardiovascular Disease Progression: Which Comes First?

CIANCIOLO, GIUSEPPE;RONCO, CLAUDIO;ZANNINI, CHIARA;LA MANNA, GAETANO
2017

Abstract

Background: Hyperhomocysteinemia (Hhcy) occurs in about 85% of chronic kidney disease (CKD) patients because of impaired renal metabolism and reduced renal excretion. Folic acid (FA), the synthetic form of vitamin B9, is critical in the conversion of homocysteine (Hcy) to methionine. If there is not enough intake of FA, there is not enough conversion, and Hcy levels are raised. Summary: Hhcy is regarded as an independent predictor of cardiovascular morbidity and mortality in end-stage renal disease. Hhcy exerts its pathogenic action on the main processes involved in the progression of vascular damage. Research has shown Hhcy suggests enhanced risks for inflammation and endothelial injury which lead to cardiovascular disease (CVD), stroke, and CKD. FA has also been shown to improve endothelial function without lowering Hcy, suggesting an alternative explanation for the effect of FA on endothelial function. Recently, the role of FA and Hhcy in CVD and in CKD progression was renewed in some randomized trials. Key Messages: In the general population and in CKD patients, it remains a topic of discussion whether any beneficial effects of FA therapy are to be referred to its direct effect or to a reduction of Hhcy. While waiting for the results of confirmatory trials, it is reasonable to consider FA with or without methylcobalamin supplementation as appropriate adjunctive therapy in patients with CKD.
Cianciolo, Giuseppe; De Pascalis, Antonio; Di Lullo, Luca; Ronco, Claudio; Zannini, Chiara; La Manna, Gaetano
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11585/603904
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 25
  • Scopus 43
  • ???jsp.display-item.citation.isi??? 40
social impact