How long a river remembers its past is still an open question. Perturbations occurring in large catchments may impact the flow regime for several weeks and months, therefore providing a physical explanation for the occasional tendency of floods to occur in clusters. The research question explored in this paper may be stated as follows: can higher than usual river discharges in the low flow season be associated to a higher probability of floods in the subsequent high flow season? The physical explanation for such association may be related to the presence of higher soil moisture storage at the beginning of the high flow season, which may induce lower infiltration rates and therefore higher river runoff. Another possible explanation is persistence of climate, due to presence of long-term properties in atmospheric circulation. We focus on the Po River at Pontelagoscuro, whose catchment area amounts to 71 000 km2. We look at the stochastic connection between average river flows in the pre-flood season and the peak flows in the flood season by using a bivariate probability distribution. We found that the shape of the flood frequency distribution is significantly impacted by the river flow regime in the low flow season. The proposed technique, which can be classified as a data assimilation approach, may allow one to reduce the uncertainty associated to the estimation of the flood probability.

Long term prediction of flood occurrence

MONTANARI, ALBERTO;
2016

Abstract

How long a river remembers its past is still an open question. Perturbations occurring in large catchments may impact the flow regime for several weeks and months, therefore providing a physical explanation for the occasional tendency of floods to occur in clusters. The research question explored in this paper may be stated as follows: can higher than usual river discharges in the low flow season be associated to a higher probability of floods in the subsequent high flow season? The physical explanation for such association may be related to the presence of higher soil moisture storage at the beginning of the high flow season, which may induce lower infiltration rates and therefore higher river runoff. Another possible explanation is persistence of climate, due to presence of long-term properties in atmospheric circulation. We focus on the Po River at Pontelagoscuro, whose catchment area amounts to 71 000 km2. We look at the stochastic connection between average river flows in the pre-flood season and the peak flows in the flood season by using a bivariate probability distribution. We found that the shape of the flood frequency distribution is significantly impacted by the river flow regime in the low flow season. The proposed technique, which can be classified as a data assimilation approach, may allow one to reduce the uncertainty associated to the estimation of the flood probability.
SPATIAL DIMENSIONS OF WATER MANAGEMENT - REDISTRIBUTION OF BENEFITS AND RISKS - Proceedings of the International Association of Hydrological Sciences (IAHS)
189
192
Aguilar, Cristina; Montanari, Alberto; Polo, María José
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11585/600133
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact