Background: Elastic scattering is probably the main event in the interactions of nucleons with nuclei. Even if this process has been extensively studied over the last years, a consistent description, i.e., starting from microscopic two- and many-body forces connected by the same symmetries and principles, is still under development. Purpose: In this work we study the domain of applicability of microscopic two-body chiral potentials in the construction of an optical potential. Methods: We basically follow the Kerman, McManus, and Thaler approach [Ann. Phys. (NY) 8, 551 (1959)10.1016/0003-4916(59)90076-4] to build a microscopic complex optical potential, and then we perform some test calculations on O16 at different energies. Results:. Our conclusion is that a particular set of potentials with a Lippmann-Schwinger cutoff at relatively high energies (above 500 MeV) reproduces best the scattering observables. Conclusions: Our work shows that building an optical potential within chiral perturbation theory is a promising approach for describing elastic proton scattering; in particular, in view of the future inclusion of many-body forces that naturally arises in such a framework.
Vorabbi, M., Finelli, P., Giusti, C. (2016). Theoretical optical potential derived from nucleon-nucleon chiral potentials. PHYSICAL REVIEW C, 93(3), 1-12 [10.1103/PhysRevC.93.034619].
Theoretical optical potential derived from nucleon-nucleon chiral potentials
FINELLI, PAOLO;
2016
Abstract
Background: Elastic scattering is probably the main event in the interactions of nucleons with nuclei. Even if this process has been extensively studied over the last years, a consistent description, i.e., starting from microscopic two- and many-body forces connected by the same symmetries and principles, is still under development. Purpose: In this work we study the domain of applicability of microscopic two-body chiral potentials in the construction of an optical potential. Methods: We basically follow the Kerman, McManus, and Thaler approach [Ann. Phys. (NY) 8, 551 (1959)10.1016/0003-4916(59)90076-4] to build a microscopic complex optical potential, and then we perform some test calculations on O16 at different energies. Results:. Our conclusion is that a particular set of potentials with a Lippmann-Schwinger cutoff at relatively high energies (above 500 MeV) reproduces best the scattering observables. Conclusions: Our work shows that building an optical potential within chiral perturbation theory is a promising approach for describing elastic proton scattering; in particular, in view of the future inclusion of many-body forces that naturally arises in such a framework.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.