We study the nonlinear fractional equation (−Δ)su=f(u) in Rn, for all fractions 0<s<1 and all nonlinearities f. For every fractional power s∈(0,1), we obtain sharp energy estimates for bounded global minimizers and for bounded monotone solutions. They are sharp since they are optimal for solutions depending only on one Euclidian variable. As a consequence, we deduce the one-dimensional symmetry of bounded global minimizers and of bounded monotone solutions in dimension n=3 whenever 1/2≤s<1. This result is the analogue of a conjecture of De Giorgi on one-dimensional symmetry for the classical equation −Δu=f(u) in Rn. It remains open for n=3 and s<1/2, and also for n≥4 and all s.

Cabré Xavier, Cinti Eleonora (2014). Sharp energy estimates for nonlinear fractional diffusion equations. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 49(1-2), 233-269 [10.1007/s00526-012-0580-6].

Sharp energy estimates for nonlinear fractional diffusion equations

CINTI, ELEONORA
2014

Abstract

We study the nonlinear fractional equation (−Δ)su=f(u) in Rn, for all fractions 0
2014
Cabré Xavier, Cinti Eleonora (2014). Sharp energy estimates for nonlinear fractional diffusion equations. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 49(1-2), 233-269 [10.1007/s00526-012-0580-6].
Cabré Xavier; Cinti Eleonora
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/599079
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 64
  • ???jsp.display-item.citation.isi??? 59
social impact