We prove a weighted fractional inequality involving the solution u of a nonlocal semilinear problem in Rn. Such inequality bounds a weighted L2-norm of a compactly supported function ϕ by a weighted Hs-norm of ϕ. In this inequality a geometric quantity related to the level sets of u will appear. As a consequence we derive some relations between the stability of u and the validity of fractional Hardy inequalities.

Cinti, E., Ferrari, F. (2015). Geometric inequalities for fractional Laplace operators and Applications. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 22(6), 1699-1714 [10.1007/s00030-015-0340-3].

Geometric inequalities for fractional Laplace operators and Applications

CINTI, ELEONORA;FERRARI, FAUSTO
2015

Abstract

We prove a weighted fractional inequality involving the solution u of a nonlocal semilinear problem in Rn. Such inequality bounds a weighted L2-norm of a compactly supported function ϕ by a weighted Hs-norm of ϕ. In this inequality a geometric quantity related to the level sets of u will appear. As a consequence we derive some relations between the stability of u and the validity of fractional Hardy inequalities.
2015
Cinti, E., Ferrari, F. (2015). Geometric inequalities for fractional Laplace operators and Applications. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 22(6), 1699-1714 [10.1007/s00030-015-0340-3].
Cinti, Eleonora; Ferrari, Fausto
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/599067
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact