Composite structures such as CFRP offer significant weight reduction over the conventional aluminum alloys for aircraft. Weight reduction improves fuel efficiency of the aircraft by approximately 20% which results in cost savings and simultaneously reduces the operational environmental footprint. However, the new aluminum-lithium alloys offer significant improvements and are viable alternatives to CFRP. Aluminum lithium alloy 2195 with Friction Stir Welding is introduced as a successful alternative to CFRP primary structures. A "thick skin" monocoque design with integral stringers as crack stoppers is discussed. An old Macchi 205 WWII fighter plane has been redesigned both in CFRP and 2195-FSW for comparison. The final designs are comparable in weight, but 2195-FSW is more competitive based on mass production costs, reparability, and environmental impact. Macchi 205 airplane is used due to in-depth experience with the original aircraft geometry and loads. Knowledge gained here can be directly transferred to larger structures, from corporate jets to large transport category airplanes [1].

Structural composites for aircraft design

DONNICI, GIAMPIERO
2014

Abstract

Composite structures such as CFRP offer significant weight reduction over the conventional aluminum alloys for aircraft. Weight reduction improves fuel efficiency of the aircraft by approximately 20% which results in cost savings and simultaneously reduces the operational environmental footprint. However, the new aluminum-lithium alloys offer significant improvements and are viable alternatives to CFRP. Aluminum lithium alloy 2195 with Friction Stir Welding is introduced as a successful alternative to CFRP primary structures. A "thick skin" monocoque design with integral stringers as crack stoppers is discussed. An old Macchi 205 WWII fighter plane has been redesigned both in CFRP and 2195-FSW for comparison. The final designs are comparable in weight, but 2195-FSW is more competitive based on mass production costs, reparability, and environmental impact. Macchi 205 airplane is used due to in-depth experience with the original aircraft geometry and loads. Knowledge gained here can be directly transferred to larger structures, from corporate jets to large transport category airplanes [1].
Pezzuti, Eugenio; Donnici, Giampiero
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11585/598393
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact