The endocannabinoids are endogenous lipids capable of binding to both cannabinoid receptors (CB) CB1 and CB2. These receptors belong to the G protein-coupled family receptors and they were discovered while investigating the mode of action of ?(9)-tetrahydrocannabinol, a component of Cannabis sativa, to which they bind with high affinity. Among many other brain sites, CB1 is present in the hypothalamic nuclei involved in the control of energy balance and body weight, as well as in neurons of the mesolimbic system which is believed to mediate the incentive value of food. At central nervous system level, CB1 activation is necessary to induce food intake after a short period of food deprivation, and when CB1 is activated by endocannabinoids produced in situ, a stimulation of the ingestion of palatable food has been described. CB1 stimulation leads to modulation of the release of some hypothalamic anorexigenic and orexigenic mediators, as well as of dopamine in the nucleus accumbens shell. Recent evidence has proved that CB1 is also present in the peripheral organs, such as the adipose tissue and gastrointestinal system, key organs in the regulation of energy metabolism. Animal models have provided solid evidence that genetically induced obesity leads to long-lasting overstimulation of endocannabinoid system synthesis resulting in permanent overactivation of CB1, which may then contribute to the maintenance of this disease. Importantly, at peripheral level, CB1 activation has been shown to stimulate lipogenesis in adipocytes. CB1 blockers increase adiponectin production in adipocytes, which leads to increased fatty acid oxidation and free fatty acid clearance. Moreover, CB1 has been shown to be up-regulated in adipocytes derived from obese rodents. These results support the role of endocannabinoids in the development and maintenance of obesity, paving the way for the development of a new class of drugs such as the CB1 blockers as a therapy for tackling obesity and the associated major cardiovascular risk factors.

The endocannabinoid system and the treatment of obesity.

PAGOTTO, UBERTO;VICENNATI, VALENTINA;PASQUALI, RENATO
2005

Abstract

The endocannabinoids are endogenous lipids capable of binding to both cannabinoid receptors (CB) CB1 and CB2. These receptors belong to the G protein-coupled family receptors and they were discovered while investigating the mode of action of ?(9)-tetrahydrocannabinol, a component of Cannabis sativa, to which they bind with high affinity. Among many other brain sites, CB1 is present in the hypothalamic nuclei involved in the control of energy balance and body weight, as well as in neurons of the mesolimbic system which is believed to mediate the incentive value of food. At central nervous system level, CB1 activation is necessary to induce food intake after a short period of food deprivation, and when CB1 is activated by endocannabinoids produced in situ, a stimulation of the ingestion of palatable food has been described. CB1 stimulation leads to modulation of the release of some hypothalamic anorexigenic and orexigenic mediators, as well as of dopamine in the nucleus accumbens shell. Recent evidence has proved that CB1 is also present in the peripheral organs, such as the adipose tissue and gastrointestinal system, key organs in the regulation of energy metabolism. Animal models have provided solid evidence that genetically induced obesity leads to long-lasting overstimulation of endocannabinoid system synthesis resulting in permanent overactivation of CB1, which may then contribute to the maintenance of this disease. Importantly, at peripheral level, CB1 activation has been shown to stimulate lipogenesis in adipocytes. CB1 blockers increase adiponectin production in adipocytes, which leads to increased fatty acid oxidation and free fatty acid clearance. Moreover, CB1 has been shown to be up-regulated in adipocytes derived from obese rodents. These results support the role of endocannabinoids in the development and maintenance of obesity, paving the way for the development of a new class of drugs such as the CB1 blockers as a therapy for tackling obesity and the associated major cardiovascular risk factors.
2005
Pagotto U.; Vicennati V.; Pasquali R.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/5960
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 81
  • ???jsp.display-item.citation.isi??? 69
social impact