Since the launch of the Fermi satellite, BL Lacertae has been moderately active at gamma-rays and optical frequencies until 2011 May, when the source started a series of strong flares. The exceptional optical sampling achieved by the GLAST-AGILE Support Program of the Whole Earth Blazar Telescope in collaboration with the Steward Observatory allows us to perform a detailed comparison with the daily gamma-ray observations by Fermi. Discrete correlation analysis between the optical and gamma-ray emission reveals correlation with a time lag of 0 +/- 1 d, which suggests cospatiality of the corresponding jet emitting regions. A better definition of the time lag is hindered by the daily gaps in the sampling of the extremely fast flux variations. In general, optical flares present more structure and develop on longer time-scales than corresponding gamma-ray flares. Observations at X-rays and at millimetre wavelengths reveal a common trend, which suggests that the region producing the mm and X-ray radiation is located downstream from the optical and gamma-ray-emitting zone in the jet. The mean optical degree of polarization slightly decreases over the considered period and in general it is higher when the flux is lower. The optical electric vector polarization angle (EVPA) shows a preferred orientation of about 15 degrees, nearly aligned with the radio core EVPA and mean jet direction. Oscillations around it increase during the 2011-2012 outburst. We investigate the effects of a geometrical interpretation of the long-term flux variability on the polarization. A helical magnetic field model predicts an evolution of the mean polarization that is in reasonable agreement with the observations. These can be fully explained by introducing slight variations in the compression factor in a transverse shock waves model.

The awakening of BL Lacertae: observations by Fermi, Swift and the GASP-WEBT / Raiteri CM; Villata M; DAmmando F; Larionov VM; Gurwell MA; Mirzaqulov DO; Smith PS; Acosta-Pulido JA; Agudo I; Arevalo MJ; Bachev R; Benitez E; Berdyugin A; Blinov DA; Borman GA; Bottcher M; Bozhilov V; Carnerero MI; Carosati D; Casadio C; Chen WP; Doroshenko VT; Efimova YS; Efimova NV; Ehgamberdiev SA; Gomez JL; Gonzalez-Morales PA; Hiriart D; Ibryamov S; Jadhav Y; Jorstad SG; Joshi M; Kadenius V; Klimanov SA; Kohli M; Konstantinova TS; Kopatskaya EN; Koptelova E; Kimeridze G; Kurtanidze OM; Larionova EG; Larionova LV; Ligustri R; Lindfors E; Marscher AP; McBreen B; McHardy IM; Metodieva Y; Molina SN; Morozova DA; Nazarov SV; Nikolashvili MG; Nilsson K; Okhmat DN; Ovcharov E; Panwar N; Pasanen M; Peneva S; Phipps J; Pulatova NG; Reinthal R; Ros JA; Sadun AC; Schwartz RD; Semkov E; Sergeev SG; Sigua LA; Sillanpaa A; Smith N; Stoyanov K; Strigachev A; Takalo LO; Taylor B; Thum C; Troitsky IS; Valcheva A; Wehrle AE; Wiesemeyer H. - In: MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY. - ISSN 0035-8711. - STAMPA. - 436:2(2013), pp. 1530-1545. [10.1093/mnras/stt1672]

The awakening of BL Lacertae: observations by Fermi, Swift and the GASP-WEBT

D'AMMANDO, FILIPPO;
2013

Abstract

Since the launch of the Fermi satellite, BL Lacertae has been moderately active at gamma-rays and optical frequencies until 2011 May, when the source started a series of strong flares. The exceptional optical sampling achieved by the GLAST-AGILE Support Program of the Whole Earth Blazar Telescope in collaboration with the Steward Observatory allows us to perform a detailed comparison with the daily gamma-ray observations by Fermi. Discrete correlation analysis between the optical and gamma-ray emission reveals correlation with a time lag of 0 +/- 1 d, which suggests cospatiality of the corresponding jet emitting regions. A better definition of the time lag is hindered by the daily gaps in the sampling of the extremely fast flux variations. In general, optical flares present more structure and develop on longer time-scales than corresponding gamma-ray flares. Observations at X-rays and at millimetre wavelengths reveal a common trend, which suggests that the region producing the mm and X-ray radiation is located downstream from the optical and gamma-ray-emitting zone in the jet. The mean optical degree of polarization slightly decreases over the considered period and in general it is higher when the flux is lower. The optical electric vector polarization angle (EVPA) shows a preferred orientation of about 15 degrees, nearly aligned with the radio core EVPA and mean jet direction. Oscillations around it increase during the 2011-2012 outburst. We investigate the effects of a geometrical interpretation of the long-term flux variability on the polarization. A helical magnetic field model predicts an evolution of the mean polarization that is in reasonable agreement with the observations. These can be fully explained by introducing slight variations in the compression factor in a transverse shock waves model.
2013
The awakening of BL Lacertae: observations by Fermi, Swift and the GASP-WEBT / Raiteri CM; Villata M; DAmmando F; Larionov VM; Gurwell MA; Mirzaqulov DO; Smith PS; Acosta-Pulido JA; Agudo I; Arevalo MJ; Bachev R; Benitez E; Berdyugin A; Blinov DA; Borman GA; Bottcher M; Bozhilov V; Carnerero MI; Carosati D; Casadio C; Chen WP; Doroshenko VT; Efimova YS; Efimova NV; Ehgamberdiev SA; Gomez JL; Gonzalez-Morales PA; Hiriart D; Ibryamov S; Jadhav Y; Jorstad SG; Joshi M; Kadenius V; Klimanov SA; Kohli M; Konstantinova TS; Kopatskaya EN; Koptelova E; Kimeridze G; Kurtanidze OM; Larionova EG; Larionova LV; Ligustri R; Lindfors E; Marscher AP; McBreen B; McHardy IM; Metodieva Y; Molina SN; Morozova DA; Nazarov SV; Nikolashvili MG; Nilsson K; Okhmat DN; Ovcharov E; Panwar N; Pasanen M; Peneva S; Phipps J; Pulatova NG; Reinthal R; Ros JA; Sadun AC; Schwartz RD; Semkov E; Sergeev SG; Sigua LA; Sillanpaa A; Smith N; Stoyanov K; Strigachev A; Takalo LO; Taylor B; Thum C; Troitsky IS; Valcheva A; Wehrle AE; Wiesemeyer H. - In: MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY. - ISSN 0035-8711. - STAMPA. - 436:2(2013), pp. 1530-1545. [10.1093/mnras/stt1672]
Raiteri CM; Villata M; DAmmando F; Larionov VM; Gurwell MA; Mirzaqulov DO; Smith PS; Acosta-Pulido JA; Agudo I; Arevalo MJ; Bachev R; Benitez E; Berdyugin A; Blinov DA; Borman GA; Bottcher M; Bozhilov V; Carnerero MI; Carosati D; Casadio C; Chen WP; Doroshenko VT; Efimova YS; Efimova NV; Ehgamberdiev SA; Gomez JL; Gonzalez-Morales PA; Hiriart D; Ibryamov S; Jadhav Y; Jorstad SG; Joshi M; Kadenius V; Klimanov SA; Kohli M; Konstantinova TS; Kopatskaya EN; Koptelova E; Kimeridze G; Kurtanidze OM; Larionova EG; Larionova LV; Ligustri R; Lindfors E; Marscher AP; McBreen B; McHardy IM; Metodieva Y; Molina SN; Morozova DA; Nazarov SV; Nikolashvili MG; Nilsson K; Okhmat DN; Ovcharov E; Panwar N; Pasanen M; Peneva S; Phipps J; Pulatova NG; Reinthal R; Ros JA; Sadun AC; Schwartz RD; Semkov E; Sergeev SG; Sigua LA; Sillanpaa A; Smith N; Stoyanov K; Strigachev A; Takalo LO; Taylor B; Thum C; Troitsky IS; Valcheva A; Wehrle AE; Wiesemeyer H
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/595761
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 99
  • ???jsp.display-item.citation.isi??? 97
social impact