MeV blazars are a sub-population of the blazar family, exhibiting larger-than-average jet powers, accretion luminosities, and black hole masses. Because of their extremely hard X-ray continua, these objects are best studied in the X-ray domain. Here, we report on the discovery by the Fermi Large Area Telescope and subsequent follow-up observations with NuSTAR, Swift, and GROND of a new member of the MeV blazar family: PMN J0641-0320. Our optical spectroscopy provides confirmation that this is a flat-spectrum radio quasar located at a redshift of z = 1.196. Its very hard NuSTAR spectrum (power-law photon index of similar to 1 up to similar to 80 keV) indicates that the emission is produced via inverse Compton scattering off of photons coming from outside the jet. The overall spectral energy distribution of PMN J0641-0320 is typical of powerful blazars and, using a simple one-zone leptonic emission model, we infer that the emission region is located either inside the broad line region or within the dusty torus.

NUSTAR, SWIFT, AND GROND OBSERVATIONS OF THE FLARING MEV BLAZAR PMN J0641-0320

D'AMMANDO, FILIPPO;
2016

Abstract

MeV blazars are a sub-population of the blazar family, exhibiting larger-than-average jet powers, accretion luminosities, and black hole masses. Because of their extremely hard X-ray continua, these objects are best studied in the X-ray domain. Here, we report on the discovery by the Fermi Large Area Telescope and subsequent follow-up observations with NuSTAR, Swift, and GROND of a new member of the MeV blazar family: PMN J0641-0320. Our optical spectroscopy provides confirmation that this is a flat-spectrum radio quasar located at a redshift of z = 1.196. Its very hard NuSTAR spectrum (power-law photon index of similar to 1 up to similar to 80 keV) indicates that the emission is produced via inverse Compton scattering off of photons coming from outside the jet. The overall spectral energy distribution of PMN J0641-0320 is typical of powerful blazars and, using a simple one-zone leptonic emission model, we infer that the emission region is located either inside the broad line region or within the dusty torus.
2016
Ajello M; Ghisellini G; Paliya VS; Kocevski D; Tagliaferri G; Madejski G; Rau A; Schady P; Greiner J; Massaro F; Balokovic M; Buhler R; Giomi M; Marcotulli L; DAmmando F; Stern D; Boggs SE; Christensen FE; Craig WW; Hailey CJ; Harrison FA; Zhang WW
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/595582
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 11
social impact