We consider the Cauchy problem related to the partial differential equation Lu = Δxu + h(u)∂yu - ∂ tu = f(·, u), where (x,y,t) ∈ ℝN × ℝ ×]0,T[, which arises in mathematical finance and in the theory oi diffusion processes. We study the regularity of solutions regarding L as a perturbation of an operator of Kolmogorov type. We prove the existence of local classical solutions and give some sufficient conditions for global existence.

Pascucci, A., Polidoro, S. (2004). On the cauchy problem for a nonlinear Kolmogorov equation. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 35(3), 579-595 [10.1137/S0036141001399349].

On the cauchy problem for a nonlinear Kolmogorov equation

PASCUCCI, ANDREA;
2004

Abstract

We consider the Cauchy problem related to the partial differential equation Lu = Δxu + h(u)∂yu - ∂ tu = f(·, u), where (x,y,t) ∈ ℝN × ℝ ×]0,T[, which arises in mathematical finance and in the theory oi diffusion processes. We study the regularity of solutions regarding L as a perturbation of an operator of Kolmogorov type. We prove the existence of local classical solutions and give some sufficient conditions for global existence.
2004
Pascucci, A., Polidoro, S. (2004). On the cauchy problem for a nonlinear Kolmogorov equation. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 35(3), 579-595 [10.1137/S0036141001399349].
Pascucci, Andrea; Polidoro, Sergio
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/594984
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 9
social impact