We consider the Cauchy problem related to the partial differential equation Lu = Δxu + h(u)∂yu - ∂ tu = f(·, u), where (x,y,t) ∈ ℝN × ℝ ×]0,T[, which arises in mathematical finance and in the theory oi diffusion processes. We study the regularity of solutions regarding L as a perturbation of an operator of Kolmogorov type. We prove the existence of local classical solutions and give some sufficient conditions for global existence.

On the cauchy problem for a nonlinear Kolmogorov equation

PASCUCCI, ANDREA;
2004

Abstract

We consider the Cauchy problem related to the partial differential equation Lu = Δxu + h(u)∂yu - ∂ tu = f(·, u), where (x,y,t) ∈ ℝN × ℝ ×]0,T[, which arises in mathematical finance and in the theory oi diffusion processes. We study the regularity of solutions regarding L as a perturbation of an operator of Kolmogorov type. We prove the existence of local classical solutions and give some sufficient conditions for global existence.
2004
Pascucci, Andrea; Polidoro, Sergio
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/594984
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 9
social impact