We illustrate how it is possible to calculate the quantum gravitational effects on the spectra of primordial scalar/tensor perturbations starting from the canonical, Wheeler-De Witt, approach to quantum cosmology. The composite matter-gravity system is analyzed through a Born-Oppenheimer approach in which gravitation is associated with the heavy degrees of freedom and matter (here represented by a scalar field) with the light ones. Once the independent degrees of freedom are identified, the system is canonically quantized and a semiclassical approximation is used for the scale factor. The differential equation governing the dynamics of the primordial spectra with their quantum-gravitational corrections is then obtained and is applied to diverse inflationary evolutions. Finally, the analytical results are compared to observations through a Monte Carlo Markov chain technique and an estimate of the free parameters of our approach is finally presented and the results obtained are compared with previous ones.
Kamenchtchik, A., Tronconi, A., Venturi, G. (2016). Quantum cosmology and the evolution of inflationary spectra. PHYSICAL REVIEW D, 94, 1-19 [10.1103/PhysRevD.94.123524].
Quantum cosmology and the evolution of inflationary spectra
KAMENCHTCHIK, ALEXANDR;
2016
Abstract
We illustrate how it is possible to calculate the quantum gravitational effects on the spectra of primordial scalar/tensor perturbations starting from the canonical, Wheeler-De Witt, approach to quantum cosmology. The composite matter-gravity system is analyzed through a Born-Oppenheimer approach in which gravitation is associated with the heavy degrees of freedom and matter (here represented by a scalar field) with the light ones. Once the independent degrees of freedom are identified, the system is canonically quantized and a semiclassical approximation is used for the scale factor. The differential equation governing the dynamics of the primordial spectra with their quantum-gravitational corrections is then obtained and is applied to diverse inflationary evolutions. Finally, the analytical results are compared to observations through a Monte Carlo Markov chain technique and an estimate of the free parameters of our approach is finally presented and the results obtained are compared with previous ones.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.