A computer code is described for the simulation of gravitational lensing data. The code incorporates adaptive mesh refinement in choosing which rays to shoot based on the requirements of the source size, location and surface brightness distribution or to find critical curves/caustics. A variety of source surface brightness models are implemented to represent galaxies and quasar emission regions. The lensing mass can be represented by point masses (stars), smoothed simulation particles, analytic halo models, pixelized mass maps or any combination of these. The deflection and beam distortions (convergence and shear) are calculated by modified tree algorithm when haloes, point masses or particles are used and by fast Fourier transform when mass maps are used. The combination of these methods allow for a very large dynamical range to be represented in a single simulation. Individual images of galaxies can be represented in a simulation that covers many square degrees. For an individual strongly lensed quasar, source sizes from the size of the quasar's host galaxy (~100 kpc) down to microlensing scales (~10-4 pc) can be probed in a self-consistent simulation. Descriptions of various tests of the code's accuracy are given.

Metcalf, R.B., Petkova, M. (2014). GLAMER - I. A code for gravitational lensing simulations with adaptive mesh refinement. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 445(2), 1942-1953 [10.1093/mnras/stu1859].

GLAMER - I. A code for gravitational lensing simulations with adaptive mesh refinement

METCALF, ROBERT BENTON;PETKOVA, MARGARITA
2014

Abstract

A computer code is described for the simulation of gravitational lensing data. The code incorporates adaptive mesh refinement in choosing which rays to shoot based on the requirements of the source size, location and surface brightness distribution or to find critical curves/caustics. A variety of source surface brightness models are implemented to represent galaxies and quasar emission regions. The lensing mass can be represented by point masses (stars), smoothed simulation particles, analytic halo models, pixelized mass maps or any combination of these. The deflection and beam distortions (convergence and shear) are calculated by modified tree algorithm when haloes, point masses or particles are used and by fast Fourier transform when mass maps are used. The combination of these methods allow for a very large dynamical range to be represented in a single simulation. Individual images of galaxies can be represented in a simulation that covers many square degrees. For an individual strongly lensed quasar, source sizes from the size of the quasar's host galaxy (~100 kpc) down to microlensing scales (~10-4 pc) can be probed in a self-consistent simulation. Descriptions of various tests of the code's accuracy are given.
2014
Metcalf, R.B., Petkova, M. (2014). GLAMER - I. A code for gravitational lensing simulations with adaptive mesh refinement. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 445(2), 1942-1953 [10.1093/mnras/stu1859].
Metcalf, R. Benton; Petkova, Margarita
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/594028
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 54
  • ???jsp.display-item.citation.isi??? 51
social impact