Photoexcited ultra-thin films of the organic semiconductor N,N'-bis(n-octyl)-dicyanoperylene-3,4:9,10-bis dicarboximide (DPI8-CN2), grown on thermal Si/SiO2, exhibit an intense room temperature emission, strongly dependent on molecular coverage, even for sub-monolayer thicknesses. The luminescence spectra are characterized by a highly structured, isolated molecule emission in the sub-monolayer regime (coverage <30%) and by a condensed-state singlet exciton fluorescence temporally evolving (within 0.5 ns) toward an unstructured, energetically relaxed, excimer-like emission, for thicker films. Once a complete monolayer is formed, only the unstructured excimer emission can be detected. The experimental findings are interpreted in terms of progressive deposition of nearly not interacting molecules, followed by islands formation where a strong dimeric coupling takes place, upon increasing the coverage. A thorough investigation by means of AFM and in-situ X-ray diffraction confirms the proposed picture.

Brillante, A., Salzillo, T., Della Valle, R.G., Venuti, E., Borgatti, F., Lunedei, E., et al. (2017). Photoluminescence as a probe of molecular organization in PDI8-CN2 ultra-thin films. JOURNAL OF LUMINESCENCE, 187, 403-409 [10.1016/j.jlumin.2017.03.058].

Photoluminescence as a probe of molecular organization in PDI8-CN2 ultra-thin films

BRILLANTE, ALDO;SALZILLO, TOMMASO;DELLA VALLE, RAFFAELE GUIDO;VENUTI, ELISABETTA;
2017

Abstract

Photoexcited ultra-thin films of the organic semiconductor N,N'-bis(n-octyl)-dicyanoperylene-3,4:9,10-bis dicarboximide (DPI8-CN2), grown on thermal Si/SiO2, exhibit an intense room temperature emission, strongly dependent on molecular coverage, even for sub-monolayer thicknesses. The luminescence spectra are characterized by a highly structured, isolated molecule emission in the sub-monolayer regime (coverage <30%) and by a condensed-state singlet exciton fluorescence temporally evolving (within 0.5 ns) toward an unstructured, energetically relaxed, excimer-like emission, for thicker films. Once a complete monolayer is formed, only the unstructured excimer emission can be detected. The experimental findings are interpreted in terms of progressive deposition of nearly not interacting molecules, followed by islands formation where a strong dimeric coupling takes place, upon increasing the coverage. A thorough investigation by means of AFM and in-situ X-ray diffraction confirms the proposed picture.
2017
Brillante, A., Salzillo, T., Della Valle, R.G., Venuti, E., Borgatti, F., Lunedei, E., et al. (2017). Photoluminescence as a probe of molecular organization in PDI8-CN2 ultra-thin films. JOURNAL OF LUMINESCENCE, 187, 403-409 [10.1016/j.jlumin.2017.03.058].
Brillante, Aldo; Salzillo, Tommaso; Della Valle, Raffaele G.; Venuti, Elisabetta; Borgatti, Francesco; Lunedei, Eugenio; Liscio, Fabiola; Milita, Silv...espandi
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/592332
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact